
New Approaches to Hydrological Prediction in Data-sparse Regions (Proc. of Symposium HS.2 at the  
Joint IAHS & IAH Convention, Hyderabad, India, September 2009). IAHS Publ. 333, 2009 

 
 

238 

Estimating precipitation for poorly-gauged areas in  
western China 
 
JUNLIANG JIN1,2, GUIHUA LU1,3 & ZHIYONG WU1,3 

1 State Key Laboratory of Hydrology, Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, 
China  
jinjunliang@gmail.com

2 College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China 
3  Research Institute of Water Problems, Hohai University, Nanjing 210098, China 

 
Abstract Hydrological simulations in data-sparse areas have large uncertainties. This paper proposes spatial 
geo-statistical interpolation algorithms based on the hydrological analogy method to estimate the spatial 
distribution of precipitation for data-sparse areas using Tropical Rainfall Measuring Mission (TRMM) 
precipitation radar (PR) data and a small number of available recorded rainfall data. Taking the Kaidu River 
basin in Xinjiang, China, as a case study, using to the relationship between TRMM PR data and sparsely-
recorded rainfall, the spatial distribution of precipitation was estimated with the proposed method. A macro-
scale land hydrological model, the Variable Infiltration Capacity (VIC) model, was then established over the 
study basin with the derived data. Hydrological simulation over five data-sparse basins (including 
Dashankou, Xining, Jiayuguan, Yingluoxia and Qingshizui) indicates that the estimated precipitation from 
TRMM PR data significantly improved the accuracy of hydrological simulation; the proposed method can 
therefore be used to estimate the spatial distribution of precipitation for sparsely-gauged areas in western 
China. 
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INTRODUCTION 
Precipitation is the basis of the hydrological cycle. However precipitation gauges are scarce in 
most areas of western China. How to obtain areal precipitation over large scales that can be used to 
drive land surface hydrological models is a central issue for hydrologists concerned with this 
region. With the development of computer and GIS science, many scholars have carried out 
research in this topic (Wang et al., 2003; Zhang & He, 1998; Seiji et al., 2004; Zhou et al., 2006).  
 Traditional hydrological methods obtain the areal precipitation of a watershed through 
raingauge observations. These methods calculate areal precipitation by interpolating point 
precipitation, using techniques such as the Thiessen polygon method and area weighted method. 
These methods improve in accuracy with the density of precipitation gauges. 
 The development of remote sensing technology and satellites for precipitation estimates, along 
with more accurate tropical rainfall measurements from the Tropical Rainfall Measuring Mission 
(TRMM) Microwave Imager (TMI) and precipitation radar (PR) instruments, have made it 
possible to monitor tropical rainfall diurnal patterns and their intensities from satellite information. 
The TRMM satellite was launched on 27 November 1997 from Japan’s Tanegashima launch 
facility. Fundamentally, the TRMM research programme is dedicated to measuring tropical–
subtropical rainfall over a lengthy time period, and by doing so, acquiring the first accurate, 
representative and consistent ocean climatology of precipitation. TRMM was initially launched 
into a low-altitude (350 km), non-sun synchronous orbit inclined at 50 degrees to the Earth’s 
equatorial plane, with a nominal mission lifetime of three years, but with expectations for a longer 
lifetime. Thus it has better ability to measure rainfall than other passive satellite remote sensing. 
There are many studies carried out utilizing the TRMM PR product (Huffman et al., 1995, 2007; 
Huffman, 1997).  
 This paper describes a method to create meteorological forcings in data-sparse regions that 
can be used to drive a model of land surface hydrology. Taking the Kaidu River basin of Xinjiang 
province as a case study, it brings forward a new method of interpolating precipitation in data-
sparse regions on the basis of analysing the correlation of TRMM precipitation and a small number 
of available recorded observations. Motivation for this study is the creation of a national, multi-
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decade, terrestrial, meteorological forcing data set to drive land surface model simulations of the 
national water balance. Therefore, the effect of the correction is discussed in terms of the land 
surface water budget by analysing long-term simulations using the Variable Infiltration Capacity 
(VIC) land surface model. This highlights a new method of estimating precipitation for 
hydrological simulation in data-sparse regions. 
 
 
DATA SOURCES AND METHODOLOGY  
Description of the Kaidu River basin  
The Kaidu River basin is located at the northern edge of YanQi basin of XinJiang province, China 
(Figs 1 and 2). It lies approximately between 80°58′E–86°55′E and 41°47′N–43°21′N and derives 
from the Sa’arming Hills of the north Tianshan Mountains. It is one of the nine headstreams of the 
Tarim River, and also is the biggest river in Bayinbuluke autonomous prefecture. The upper Kaidu 
River flows through the small Yourdusi basin eastward then turns to southeast to Uygur 
Autonomous Region, and along a big canyon to the Dashankou hydrological station, the outlet of 
this mountain river. 
 High mountains, canyons and basins, i.e. a complicated topography, exist in the Kaidu River 
basin. The elevation changes from 4589 m to 1340 m (outlet) and mean basin elevation is 3100 m. 
The area upstream of Dashankou hydrological gauge is 19 012 km2. Precipitation and air 
temperature over the basin are distributed unevenly. Abundant precipitation falls in the mountains 
and little on the plain. 
 

 
Fig. 1 Position of Kaidu River basin and meteorological station information (basin area: 19 012 km2). 

 
Tropical Rainfall Measuring Mission precipitation data 
The TRMM satellite was launched in November 1997, and a number of experimental, real-time 
data sets based on the TRMM products and other satellite sources are currently available (Huffman 
et al., 1995, 2007; Huffman, 1997), including the 3B42RT product, which is a merger of the 
3B40RT and 3B41RT products. The 3B40RT product is a merger of all available Special Sensor 
Microwave/Imager (SSM/I) and TMI precipitation estimates. The SSM/I data are calibrated to the 
TMI using separate global land and ocean matched histograms. The 3B41RT product consists of 
precipitation estimates from geostationary infrared (geo-IR) observations using spatially and 
temporally varying calibrations by the 3B40RT product. The 3B43 product used in this study 
describes gridded estimates on a calendar month temporal resolution and a 0.25-degree by 0.25-
degree spatial resolution spanning 50°N–S latitudes globally. 
 
National meteorological information centre 
In this study, 753 meteorological stations covering most regions of mainland China for the period 
1951–2008 were investigated. The data set contains daily precipitation, daily maximum and daily  
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Study Area

meteorological station

 
Fig. 2 Location of study area and 753 meteorological stations over China. 

 
 
minimum air temperature derived from the China Meteorological Data Sharing Service system. 
There is only one meteorological station (Bayinbuluke station) in the Kaidu River basin. 
 
Hydrology model and observation inputs 
The Variable Infiltration Capacity (VIC) model (Liang et al., 1994, 1996) was used to evaluate the 
method. It was run using combined precipitation from TRMM and gauge observed rainfall over 
the Kaidu River basin. VIC is a macroscale hydrological model that solves full water and energy 
balances, and was originally developed by Xu Liang at the University of Washington, USA (Liang 
et al., 1994, 1996). VIC has been applied, in its various forms, to many USA watersheds including 
the Columbia River, the Ohio River, the Arkansas-Red rivers, and the Upper Mississippi rivers, as 
well as being applied globally (Abdulla et al., 1996; Cherkauer & Lettenmaier, 1999; Hamlet & 
Lettenmaier, 1999; Liang & Xie, 2001). The model was designed both for inclusion in GCMs as a 
land–atmosphere transfer scheme, and for use as a stand-alone macroscale hydrology model. 
 The VIC model was set up over the Kaidu River basin at a resolution of 30 km. The model 
domain consists of 39 computational grid cells. A 30 km × 30 km river network based on a 1-km 
DEM was developed over the entire Kaidu River basin for the purpose of defining the model’s 
river routing scheme using the method of Lohmann et al. (1996, 1998) which takes daily VIC 
surface and subsurface runoff as input to obtain model simulated streamflows at the basin outlet. 
 
Development of the forcing data set  
The development of the forcing data set progressed through a number of steps in terms of the 
spatial and temporal resolution and the sophistication of the interpolation methods. The following 
steps describe the method to estimate the spatial distribution of precipitation for a data-sparse area 
with TRMM data and a small number of available recorded rainfall data. 
 
 Step 1 Verify the correlation coefficient (R) of precipitation between monthly TRMM 
and gauge observations To decide if grid cells need to be corrected or not, an R statistical test 



Estimating precipitation for poorly-gauged areas in western China 
 

241

was carried out to determine whether the TRMM data set is statistically similar to the observed 
data set or not: 
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where Ti and Gi are the TRMM and gauge precipitation at time step i, respectively, and T and G  
are the mean TRMM and gauge precipitation. 
 Statistics of the correlation coefficient between monthly rainfall of Bayinbuluke and TRMM 
grid cells over the basin were calculated. The results show that the R of all 39 grid cells are larger 
than 0.88, 76% are larger than 0.90. It was assumed that all of the grid cell rainfalls have 
frequency distributions similar to the Bayinbuluke gauge which is considered representative of the 
basin. Therefore, based on the observations of the Bayinbuluke gauge, the spatial distribution of 
rainfall can be estimated. 
 
Table 1 Description of the data sets. 
Site Data set description 
Bayinbuluke 1981–1987, daily precipitation, daily Tmax, Tmin 

1998–2007, monthly precipitation 
TRMM PR 1998–2007, monthly precipitation, global 50°S–50°N, 0.25° × 0.25° 
Dashankou 1981–1987, daily streamflow 
 
 
 Step 2 Calculate the correction ratio This step calculates the correction ratio of all grid cells 
in the basin. The aim of the correction is to force the rainfall of the TRMM to match that of the 
gauge observations. The correction ratio is calculated based on the algorithm below: 

 , , 0( ). ( 1,2,3,i p o p i )x x x x i n= ⋅       = …,                                                                                      (2)
 

where ix  represents the TRMM precipitation of grid cell which to is be corrected, x0 represents the 
TRMM precipitation of the grid cell which has the nearest distance to the observation gauge, x0,p is 
the gauge observed precipitation of grid cell (In this case, x0,p is the rainfall of Bayinbuluke 
station). 0ix x  denoted as λ . 
 Commonly, basin climate is described by long-term averages. So in this study, we used the 
mean monthly precipitation of TRMM for every year to calculate the correction ratio λ : 

 , , 0, . ( 1,2, , ; )i j i j jx x i n jλ =    = …  =1,2,…,12                                                                            (3) 
where ,i jx  represents the grid cell i, the j monthly mean precipitation, 0, jx  represents the grid cell 
in which the observation gauge was located, the j monthly mean precipitation, λi,j represents the 
grid cell i, and the j monthly correction ratio. This algorithm utilized the distributed correlation 
over the basin. As for the multi-year average, the average correlation over basins is generally 
steady or changes in small ranges. It presents much more precipitation on the windward slope than 
on the leeward slope. It estimates precipitation on the basis of the small amount of available 
recorded rainfall data by using analogous relations of TRMM precipitation data over the basin. 
 
 
RESULTS AND ANALYSIS  
The meteorological input data (forcing data) for the VIC model include daily precipitation, 
maximum temperature (Tmax), minimum temperature (Tmin). Tmax and Tmin are calculated on 
the basis of observed data according to the environmental adiabatic lapse rate of –0.65°C/100 m of 
elevation ascent.  
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 The VIC model was used to test the effect of the correction method on the two data sets of 
streamflow simulations. The average relative error, Er and the Nash-Sutcliffe coefficient of 
efficiency (Nash & Sutcliffe, 1970), NSE, were chosen as assessment criteria: 

Average relative error: ( ) /
n n n

C O
i i i

Er Q Q Q= −∑ ∑ ∑                                                                     (4) 

where  is the simulated discharge, and is the observed discharge. cQ oQ

Nash-Sutcliffe Coefficient of Efficiency: 2 2
, , ,1 ( ) / (

n n

i c i o i o o
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where Qi,c is the simulated discharge, Qi,o is the observed discharge, Q0 is the mean observed 
discharge over the entire period, all in m3 s-1; n is the number of daily or monthly precipitation or 
stream flow pairs in the analysis. The Nash-Sutcliffe efficiency measures the goodness of fit using 
a ratio of error variance to the variance of the observation where 1 represents a perfect match, and 
smaller and negative values represents worse matches. 
 The VIC model was driven by the proposed corrected daily forcing and raw gauged 
precipitation over the entire five river basins (Dashankou, Xining, Jiayuguan, Yingluoxia and 
Qingshizui) in western China. VIC has seven user-calibrated hydrological parameters shown in 
Table 2. We keep the thickness of the first soil moisture layer constant (d1 = 0.1 m), and use basin 
observed hydrographs to calibrate the model because they reflect the integrated basin hydrological 
response. We use observed daily hydrographs from five catchments with drainage areas varying 
from 6810 km2 to 18 730 km2. We use an auto-optimization procedure base on Rosenbrock (1960) 
for calibration. The optimization procedure used the NSE criterion as the objective function. After 
parameters were calibrated, the effects of land surface water budget were measured by using the 
Er and NSE criteria. 
 Simulations over Kaidu River basin and the other four sites are shown in Fig. 2: monthly 
streamflow was accumulated from daily flow. Table 3 indicates that the result using the corrected 
data set has a significant improvement compared to the raw data set. For Kaidu River basin, the 
average relative error, Er and the Nash-Sutcliffe coefficient of efficiency, NSE, were –0.35 and 
0.10 respectively, for the raw data set; the corresponding values for the corrected data set were  
–0.09 and 0.61. The results show an improvement from using the corrected precipitation estimates 
to drive the hydrological model. 
 
Table 2 The seven VIC user-calibrated hydrological parameters. 

Parameter Units Description 
b_infilt N/A variable infiltration curve 
Dsmax mm/day maximum velocity of baseflow 
Ds fraction fraction of Dsmax where non-linear baseflow begins 
Ws fraction fraction of maximum soil moisture where non-linear baseflow occurs 
d1 m thickness of the first soil moisture layer 
d2 m thickness of the second soil moisture layer 
d3 m thickness of the third soil moisture layer 
 
Table 3 Results of the hydrological simulation with raw and corrected precipitation over five basins in 
western China. 

Dashankou Xinning Jiayuguan Yingluoxia Qingshizui Sites 
Raw Corrected Raw Corrected Raw Corrected Raw Corrected Raw Corrected

Er (%) –35 –8.9 –8.9 –0.50 0.90 2.70 –11 –2.1 –17 –4.9 
Daily NSE –0.28 0.44 0.23 0.46 0.07 0.28 0.74 0.78 0.53 0.69 
Monthly NSE 0.11 0.61 0.53 0.68 0.32 0.41 0.82 0.89 0.76 0.86 
Er: Quantitative accuracy coefficient of efficiency; NSE: Nash-Sutcliffe efficiency; Raw: represents the 
simulation using raw precipitation; Corrected: represents the simulation using precipitation interpolated with 
the proposed method. 
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Fig. 3 Average monthly discharge of the five study sites in western China (Dashankou, Xining, 
Jiayuguan, Yingluoxia and Qingshizui).   
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SUMMARY AND CONCLUSIONS 
Precipitation is the single most uncertain input in hydrological simulations over poorly-gauged 
areas. In this research, we have improved the forcing data set by using TRMM precipitation data to 
drive the VIC macro-scale land hydrological model to simulate the streamflow of five data-sparse 
basins in western China. The developed data set was based on a small number of gauge 
observations combined with TRMM precipitation, and provided an improvement compared to 
uncorrected precipitation from gauges alone. The results show that hydrological simulation using 
the VIC land hydrological model and calibrated parameters over western China is feasible. This 
method can be used for initial hydrological simulation and water resources evaluation in data-
sparse regions. 
 At the same time, some simulations, such as of the wet season of 1983 and 1987 of the Kaidu 
River basin were poor. We consider this to be due to the original data set which had only one 
gauge in the basin. The lack of data resulted in the poor simulations. Improvements in simulation 
may be possible by acquiring more observed data, but this is the subject of further study. 
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