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Abstract An algorithm for mapping daily spatial actual evapotranspiration (ET) from remotely sensed 
MODIS data is presented. It is based on the surface energy balance scheme and the modified Priestley-
Taylor equation, and has been applied to the MODIS data acquired during growing seasons over the 
Laohahe River basin, northeastern China. Regional daily ET values computed by the modified Xinanjiang 
hydrological model were used to validate ET values derived from MODIS data. The results were in good 
agreement, with a root mean square error of 0.3843 mm and correlation coefficient of 0.9029. It is suggested 
that the algorithm is applicable and operational for mapping daily actual ET over the study area. 
Key words daily actual evapotranspiration; MODIS; Priestley-Taylor equation; Laohahe River basin, China  
 
 
INTRODUCTION  

Evapotranspiration (ET) is an important variable for water and energy balances on the Earth’s 
surface (Rivas & Caselles, 2004; Sobrino et al., 2007). Satellite remote sensing provides an 
unprecedented global coverage of critical hydrological data which are logistically and econom-
ically impossible to obtain through ground-based observation networks (Jiang & Islam, 2001). 
 It is well known that the residual method is the most commonly used scheme to calculate 
surface latent heat flux based on the surface energy balance: 

GRHE n −=+λ  (1) 

where Rn is the net radiation (including long-wave and short-wave), G is the soil heat flux, H is the 
sensible heat flux, and λE is the latent heat flux. It is possible to obtain spatial information of net 
radiation and soil heat flux satisfactorily from satellite remote sensing images and derive informa-
tion from them. But significant uncertainty exists in the estimation of sensible heat flux using 
remotely sensed data, because the aerodynamic resistance and surface roughness length that are 
required are difficult to estimate accurately (Stewart et al., 1994; Chehbouni et al., 1996). 
Therefore, the ratio of latent heat flux and available radiant energy was introduced to estimate ET 
from remote sensing images in many publications ( Priestley & Taylor, 1972; Jiang & Islam, 2001; 
Wang et al., 2006, 2007; Venturini et al., 2008). 
 Parlange et al. (1995) provided a general form of various formulations describing ET:  
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where ea is the air vapour pressure at a reference height (often 2 m); ea
* is the air saturation vapour 

pressure; Δ is the gradient of the saturated vapour pressure to the air temperature; (Δ = dea
*/dT), 

and γ  is the psychrometric constant. The f(u) term represents some function of the wind velocity; 
A and B are model-dependent parameters; and ψ  is generally taken to be unity. 
 Equation (2) gives daily estimates of latent heat flux with high reliability when applied 
locally, but has been less successful when applied over large areas (Parlange et al., 1995). One of 
the major stumbling blocks is that we are unable to obtain effective regional values for the free 
parameters in these equations (Jiang & Islam, 2001).  
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 Priestley & Taylor (1972) simplified equation (2) to: 
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where α = 1.26 is the so-called Priestley-Taylor parameter. Equation (3) can form the basis for 
estimating evaporation over large areas using primarily remote sensing observations. However, it 
is only applicable for water bodies and wet vegetation surfaces. 
 Based on the above study, Jiang & Islam (2001) adapted equation (2) to: 
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where ϕ  is a modified  form of the parameter α ranging from 0 to 1.26. Equation (4) can be 
treated as an extension of the Priestley-Taylor equation, since the parameter ϕ  takes a wider range 
of values than the Priestley-Taylor parameter α. More importantly, the Priestley-Taylor evap-
oration is primarily applicable for wet conditions, while the use of contextual information allows 
the application of equation (4) over large heterogeneous areas (Jiang & Islam, 2001).  
 It has been found that the modified Priestley-Taylor parameter ϕ  can be estimated from the 
trapezoid feature space of land surface temperature and Normalized Difference Vegetation Index 
(NDVI) (Jiang & Islam, 2001; Wan et al., 2004; Wang et al., 2006).  
 In this paper, an algorithm based on equation (4) was applied to MODIS data to estimate the 
spatial distribution of the daily ET over the Laohahe River basin, northeastern China. 
 
 
METHODOLOGY 

Study area and data 
The Laohahe River (catchment area: 18 599 km2) is located in a semi-arid region and is a tributary 
of the West Liaohe River. It is situated in northeast China between 41°–43°18′N and  
117°–120°30′E (Fig. 1). Topographically, the Laohahe River basin shows well-pronounced varia-
tions, with the elevation ranging from about 400 m at the channel outlet to around 2000 m at the 
mountain ridges in the area.  
 The MODIS products were downloaded from the Level1 and Atmosphere Archive and 
Distribution System (LAADS) provided by NASA. A total of 28 MODIS images acquired under 
 
 

 
Fig. 1 Topography of the Laohahe River basin and the location of nearby meteorological stations. 
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clear-sky conditions over the basin were used. The image acquisition period ranged from June to 
September 2000, covering the growing season. The 1–7, 19 and 31–32 bands of MODIS data were 
used to retrieve land surface temperature, albedo, atmospheric water content and NDVI 
respectively. 
 Daily maximum and minimum air temperature data, collected from standard meteorological 
stations shown in Fig. 1, were utilized to produce instantaneous air temperature on the days when 
MODIS images were acquired. Furthermore, 30″ DEM data from SRTM were also used in this 
study to calculate relative parameters. 
 
 
ESTIMATION OF RELATIVE PARAMETERS 

The modified Priestley-Taylor parameter, ϕ 
The modified Priestley-Taylor parameter, ϕ  of each pixel of the MODIS images was calculated as 
follows (Jiang & Islam, 2001; Wang et al., 2006): 

( ) minminmax
minmax
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−
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i  (5) 

where LSTmax, LSTmin and LSTi are, respectively, the maximum, minimum and estimated pixel land 
surface temperature value in the image; ϕmax = 1.26 and ϕmin = 0. The maximum value of ϕ 
(= 1.26) corresponds to pixels with maximum ET under equilibrium surface moisture conditions, 
while a value of 0 for ϕ corresponds to pixels with no ET. The applicable split-window algorithm 
for retrieving land surface temperature from MODIS data was used herein (Mao et al., 2005). 
 
Parameters Δ and γ 
Richards (1971) suggested a simple algorithm to calculate Δ: 
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where Ta is instantaneous air temperature (K), which was calculated from daily maximum and 
minimum air temperature (Parton & Jogan, 1981). 
 The psychrometric constant γ  was calculated according to the research of FAO (Allen et al., 
1998): 
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where P is atmospheric pressure (kPa), and z is elevation above sea level (m). 
 
Net radiation, Rn 
Net radiation Rn is calculated as: 

↑−↓+−= llsn RRRR )1( α    (11) 

where Rs is the incoming short-wave solar radiation (Wm-2); α is the surface albedo; Ri↓ is the 
long-wave downward radiation (Wm-2) from the atmosphere; and Ri↑ is the long-wave upward 
radiation from land surface (Wm-2).  
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 The parameter Rs is calculated as: 
θτ cos0 sws drKR ⋅⋅=    (12) 

where K0 is the solar constant at the atmosphere top (=1370 Wm-2); dr is the sun–earth distance 
calculated from the Julian day of year; τsw is the atmospheric clear-sky short-wave transmission 
factor; and θ  is the solar zenith angle. The factor τsw is obtained by (Tasumi et al., 2000): 

Zsw
510275.0 −×+=τ   (13) 

where Z is pixel elevation obtained from DEM data. 
The parameter α is calculated from linear combination bands following the Liang’s model 

(Liang, 2001): 

0015.0)7(081.0)5(112.0)4(116.0)3(24.0)2(29.0)1(16.0 −+++++= RRRRRRα  (14) 

where R(i) is the ith band’s reflectance of MODIS images. 
 Given a certain atmospheric condition, the atmospheric long-wave downward radiation (Ri↓) 
is expected to be very homogeneous over a large synoptic area (Jiang & Islam, 2001). Thus the 
measurements of Ri↓ from Chifeng ground station within the study area were applied to the whole 
study region. 
 The parameter Ri↑ is calculated as: 

4
ssi TR σε↑=   (15) 

where εs is the land surface emissivity; σ is the Stefan-Boltzmann constant (5.67 × 10-8 Wm-2 K-4); 
and Ts is the land surface temperature (K). According to Sobrino et al. (2001), εs can be calculated 
from an empirical relationship with NDVI, which is obtained using the reflectance of the second 
and first bands (R(2) and R(1)) of MODIS images: 
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Soil heat flux, G 
Although soil heat flux often changes with time, the magnitude is small compared to net radiation 
over dense vegetation. Soil heat flux generally can be estimated according to relationships between 
the above parameters Rn, Ts, α and NDVI (Bastiaanssen et al., 1998). In this study we use the 
following method to estimate G: 

[ ] ns RNDVITG )978.01(0077.00036.0)15.273( 4−+−= α   (17) 
 

Daily ET 
The ET estimated from MODIS data was instantaneous for the time of the satellite sensor overpass. 
According to the model by Jackson et al. (1983), the instantaneous ET can be converted to daily 
actual total ET under the assumption that the diurnal change of ET is similar to that of solar 
irradiance on a clear day. The method is: 
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4734242 1015.31025.81002.21096.50.12 LLLLa −−−− ×−×+×−×−=  (20) 

473724 1099.41000.81010.3123.0 LLLLb −−− ×+×+×−=  (21) 
where Ed is the daily ET, Ei is the instantaneous ET, t is the time (beginning at sunrise) when a 
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MODIS image is acquired, N is the time period between sunrise and sunset in units of t, D is the 
Julian day of year, and L is the pixel’s latitude. 
 
 
RESULTS AND VALIDATION 

In this study we obtained spatial distributed mapping of daily ET for 28 clear-sky days between 
days 157 and 274 in 2000 over the Laohahe River basin, northeastern China.  
 Because of the missing of the direct measurement of observed actual ET, we use actual ET 
calculated from water balance equation to evaluate the performance of ET estimation from 
MODIS images. The modified Xinanjiang model (denoted XAJ model) was utilized to calculate 
actual ET during the selected 28 days. The core of the model is the storage capacity distribution 
curves of tension water and free water, which describe their spatial heterogeneity within a basin 
(Zhao, 1992). The evapotranspiration component is estimated with a model using three soil layers. 
The XAJ model was successfully used in the Laohahe catchment for daily runoff simulation and 
flood forecasting (Ren et al., 2006; Yuan & Ren, 2008).  
 Daily precipitation and pan evaporation data from 1964 to 1980 were used for the calibration 
of model parameters and the recorded data at the hydrological control station of the basin from 
1981 to 2000 were used for the verification. The model gave daily ET values in the selected 28 
days. The relationship between actual daily ET estimated from MODIS images and calculated 
from the hydrological model is shown in Fig. 2.  
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Fig. 2 Relationship between actual daily ET estimated from MODIS images and calculated from the 
XAJ model. 

 
 
 It can be seen in Fig. 2 that there was a good agreement between both ET, with R2 and slope 
coefficient of 0.8153 and 1.0002, respectively. The root mean square error of estimated ET is 
0.3843 mm. The results demonstrate that the method used for estimating ET with MODIS images 
is applicable. 
 
 
DISCUSSION 
An applicable algorithm was developed based on surface energy balance equation and the 
modified Priestley-Taylor model for the mapping of the distributed daily actual ET using MODIS 
images. The algorithm was used to estimate actual daily ET from MODIS images during the 
growing seasons over the Laohahe River basin, northeastern China. Regional daily ET computed 
by the modified Xinanjiang (XAJ) hydrological model were used to validate the estimated ET 
values derived from remotely sensed data. The results showed that ET computed from the XAJ 
model and ET estimated from MODIS images are in good agreement. It is suggested that the 
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algorithm is applicable and operational for mapping daily actual ET over the study area. 
 In order to use the algorithm proposed by this paper for water recourses management and 
agricultural decision making, the algorithm should be validated using more data and be tested 
under different environments and different land use scenario conditions in future work. 
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