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Abstract Rainfall variability includes both spatial and temporal variability and is a potential source of 
uncertainty in rainfall–runoff modelling. The reliability of rainfall estimates depends on the accuracy of 
measurements, the number of raingauges and the spatial interpolation approach used to integrate point 
observations. However, degrading raingauge networks in South Africa represent a challenge to adequately 
account for this variability and extend rainfall records in practice. Therefore, there is need for correction 
procedures that address the uncertainty that exists in using such sparse data. The objective of this study is to 
demonstrate the importance of correcting original interpolated data sets to improve long-term estimates of 
spatial and temporal rainfall characteristics within South African catchments. The focus is on the generation 
of long time series of spatial rainfall over periods that span very different raingauge network densities. The 
study, through specific example sub-basins (e.g. improvements in simulation statistics such as coefficient of 
efficiency (CE) values of untransformed flows from 0.59 to 0.82 and 0.52 to 0.74 for 1959–1990 and 1991–
2000 periods, respectively, for X31A sub-basin) demonstrated that a simple correction procedure based on 
rainfall frequency characteristics can be used to remove some uncertainties in spatial rainfall estimations and 
consequently model simulations. 
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INTRODUCTION 
Many developing countries suffer from inadequate hydrometeorological data and frequently rely 
on hydrological models to generate data that can be used for water resources planning. However, 
rainfall–runoff models are very sensitive to the rainfall inputs used (Sawunyama & Hughes, 2007, 
2008) and while individual raingauges may provide reasonably accurate point data, the number of 
gauges is often insufficient to represent spatial variations in rainfall. This situation is exacerbated 
in most parts of South Africa by highly variable rainfall patterns related to orographic and 
convectional forcing (Lynch, 2004). Sawunyama & Hughes (2007) identified the problems and 
uncertainties associated with using raingauge networks to generate spatially averaged rainfalls 
when the network densities are inconsistent over time. Reliable estimations of sub-basin rainfall 
are obtained when the number of raingauges and their location can realistically represent the areal 
rainfall characteristics and the records are of sufficient length and stationary (Lynch, 2004). In 
South Africa, this is rarely achieved and there is a need to develop and employ correction 
procedures to derive more accurate long time series of rainfall estimates (both in space and time). 
The objective of this study is to reduce spatial rainfall uncertainties and generate long rainfall 
records using a simple approach based on rainfall frequency characteristics. 
 
 
DATA AND METHODS 
Historical monthly spatially averaged WR90 rainfall (1920–1990) and monthly potential 
evaporation data for selected sub-basins (quaternary catchments) in South Africa were obtained 
from the national water resources database (WR90) (Midgley et al., 1994). These data were used 
to calibrate the modified version (including surface water–groundwater interactions) of the 
monthly Pitman model (Hughes, 2004) against all observed data available during this period. 
Rainfall stations used in the WR90 study were also used here, together with the Inverse Distance 
Weighting (IDW) approach to generate sub-basin spatial rainfall data. The observed flow data 
were obtained from the Department of Water Affairs and Forestry (DWAF). Several sub-basins 
ranging from small to medium size, covering a wide range of hydro-climatic conditions were 
selected (Fig. 1). All of the analyses were undertaken using the facilities available within the  
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Fig. 1 Map of South Africa showing selected catchments, distribution of Catchment Mean Annual 
Precipitation (CMAP in mm/annum) and rainfall stations (small solid dots) for different regions across 
the country.  

 
 
SPATSIM (Spatial and Time Series Information Modelling) software package (Hughes & Forsyth, 
2006). 
 The assessment of trends in annual rainfall data series in this study involved visual 
interpretations of simple 5-year moving-averages and the application of a non-parametric Mann-
Kendall statistical test (Hirsch et al., 1982), while simple statistics (i.e. mean and variance) were 
used for monthly trends. The correction procedure (after Hughes & Smakhtin, 1996; see also 
Sawunyama & Hughes, 2008 for details of the procedure) was developed to adjust the frequency 
characteristics of the IDW spatially interpolated raingauge data using the frequency characteristics 
of a reference stationary time series data set (WR90, 1920–1990). The objective was to extend the 
records to September 2000, as this was the longest period spanned by the raingauge records that 
were available for this study. While the correction procedure is simple to apply when correcting 
rainfall characteristics of different spatial data sets covering the same period, the intention in this 
study was to correct one data set using another data set when the two are not coincident in time 
(i.e. use 1920–1990 data to correct IDW interpolated data for 1991–2000 where there are few 
available raingauges). The 1991–2000 period also includes raingauges that were operational over 
the whole period 1920–2000. Under such circumstances, it is essential to recognise that the two 
data sets may have “real” differences in rainfall characteristics as well as “false” differences 
related to the information content of the raw data. 
 The analysis was based on direct comparisons of three spatial rainfall realizations, as well as 
comparisons of the flow simulations that result from their use with the rainfall–runoff model. The 
first realization consists of the WR90 (1920–1990) regional rainfall data (Midgley et al., 1994), 
which is the most widely available and longest data set used in water resources assessments in 
South Africa and known to be stationary. The second realization is based on the IDW interpolated 
data (1920–2000) using the closest three or four raingauges to the sub-basin centroid. While there 
are often adequate gauges within some parts of the period 1920–1990, the number of available 
gauges can be highly variable and there has been a substantial decline in network density since 
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1990. The third realization consists of the same rainfall data source as the second realization, but 
with the frequency characteristics corrected to be the same as the first realization and therefore 
expected to be stationary. 
 
 
RESULTS 
Rainfall analyses 
The individual raingauge analysis based on annual rainfall totals (Table 1 and Fig. 2(a)) provides 
evidence that there are no ‘real’ non-stationarities due to natural climate variations and provides a 
basis for investigating the existence of “false” trends in the IDW spatially interpolated data. The 
analyses of spatially interpolated data (Table 2 and Fig. 2(b)), however, showed that false non-
stationarity can be introduced (often through the closure of key gauges) and that this can be 
removed by employing a nonlinear correction procedure which only corrects the frequency 
characteristics of rainfall (Table 3 and Fig. 2(c)).The correction procedure involves transferring 
source rainfall (originally interpolated IDW spatial data) values to destination values (i.e. the 
corrected IDW time series) through use of similar percentage points (probabilities) from the 
respective rainfall frequency of exceedence curves (RFCs), which summarise the relationship 
between rainfall magnitude, and therefore variability within a time series (Hughes & Smakhtin,  
 
 
Table 1 Mann-Kendall test summary statistics for the individual raingauge analysis. 
Sub-basins raingauge no.  N Kendall tau Test z p-value 
G10A-C (0022038W)   96   0.061   0.880 0.379 
K40A (0029294W)   76 –0.137 –1.749 0.128 
D32A-J (0172163W) 123 –0.021 –0.350 0.726 
C12D (0477772W)   88 –0.077 –1.060 0.298 
X31A (0594539W)   79 –0.054 –0.707 0.480 
N is the length of time series in years; **trend significant at α = 0.05 level; *trend significant at α = 0.1 level. 

 
Table 2 Mann-Kendall test summary statistics of IDW spatially interpolated data. 
Sub-basin N Kendall tau Test z p-Value 
C12D 80   0.089   1.172 0.241 
G10A 80 –0.419 –5.500 0.001** 
G10B 80 –0.037 –0.490 0.624 
K40A 80 –0.043 –0.565 0.572 
X31A 80   0.020   0.258 0.798 
D32B 80 –0.069   0.906 0.365 
D32J 80   0.128   1.687 0.092* 
N is the length of time series in years; ** trend significant at α = 0.05 level; *trend significant at α = 0.1 level. 

 
Table 3 Mann-Kendall test summary statistics of transformed (corrected) data. 
Sub-basin N Kendall tau Test z p-Value 
C12D 80   0.070   0.922 0.365 
G10A 80 –0.001 –0.017 0.987 
G10B 80   0.040   0.523 0.600 
K40A 80 –0.100 –1.313 0.189 
X31A 80 –0.080 –1.055 0.291 
D32B 80   0.036   0.474 0.636 
D32J 80   0.049   0.640 0.522 
N is the length of time series in years; ** trend significant at α=0.05 level; *trend significant at α = 0.1 level. 
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Fig. 2 An illustration of a 5-year moving-average of: (a) individual raingauge, (b) original spatially 
interpolated gauge data and (c) corrected spatial time series for G10A sub-basin. 

 

 

 
Fig. 3 Monthly rainfall characteristics for two sample sub-basins: D32B and G10A (AVE is the long-
term average monthly rainfall and CV is the coefficient of variance). IDW_org represent originally 
interpolated time series and IDW_corr represent corrected time series. 

 

1996; Sawunyama & Hughes, 2008). The destination RFCs are based on WR90 rainfall data, with 
the assumption that the destination RFC is representative of the frequency characteristics of real 
catchment rainfall.  
 The results for two example sub-basins using the monthly means and variance (Fig. 3) show 
that there can be major differences between the three spatial rainfall realizations. The WR90 data 
monthly characteristics are based on a 70-year period data set (1920–1990), while the original and 
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corrected IDW are based on an 80 year period dataset (1920–2000). G10A shows that for more 
than 80% of the time, the monthly rainfall totals (both high and low values) are systematically 
under-estimated by about 40% when based on the original IDW interpolated data; this could have 
a major influence on model simulation results. While some results, show significant improvements 
after correcting the data (e.g. G10A), there are no improvements in others (e.g. D32B). One reason 
is that there are enough gauges distributed within the low topography of sub-basin D32B to 
adequately characterise rainfall variability. In contrast, the results for G10A reflect the high 
topographic variation where the loss of data from key gauges can result in spatial rainfall estimates 
that are not representative. 
 
Model response to different spatial rainfall inputs 
This section evaluates the use of different spatially interpolated rainfall data for the evaluation 
period 1920–2000 as input to the Pitman rainfall–runoff model for both the calibration period (all 
observed data up to 1990) and the extended period (1991–2000). A total of five rainfall realizations 
and model outputs were generated (Table 4). Four evaluation statistics were used to assess model 
performance: percentage difference of the means of monthly flows (%Diff Mn), percentage 
difference of standard deviations of monthly flows (%Diff stdv), coefficient of determination (R2) 
and coefficient of efficiency (CE). 
 Many of the simulations based on the original IDW rainfall realizations are at least as good as 
the simulations based on calibration using the WR90 rainfall data. However, there are a number of 
cases where the original IDW rainfall data produced poor results that were improved by the use of 
the rainfall correction process. It is also evident that some of the calibration results do not generate 
“acceptable” simulations based on some of the statistics (note the large %Diff values when using 
log transformed flows for some sub-basins). This is partly related to unaccounted upstream 
development effects in the observed data, while a further contributing factor is expected to be that 
none of the available rainfall inputs are representative of the true sub-basin rainfall input. The 
similarity in results across all three simulations for the period up to 1990 for some basins could be 
related to the fact that all of the rainfall inputs are based on the same source sample of rainfall data 
and that these data are generally sufficient to provide representative inputs to the model.   
 For the extended period, 1991–2000 (Table 4), which is characterised by a reduction in 
raingauge numbers relative to 1920–1990, some of the simulation statistics based on the original 
IDW data are poor (e.g. D32A-J, G10A) and some satisfactory (e.g. X31A), while for the 
corrected input rainfall data the statistics improved for most of the sub-basins. However, in some 
instances a few gauges can give equally good results especially when the sub-basins are small or 
do not exhibit complex topography. The correction procedure was very useful in removing large 
systematic uncertainties in spatial rainfall estimates. An example is provided in Fig. 4 for the  
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Fig. 4 Comparison of monthly flow time series from October 1990 to September 2000 for G10C. 
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Table 4 Comparison of simulated statistics (with reference to observed flows) based on five rainfall realizations. 
Un –transformed flows (Q) Log-transformed flows {ln(Q)}  Sub-basins Data 
%Diff 
Mn 

%Diff 
Stdv  R2 CE 

%Diff 
Mn 

%Diff 
Stdv  R2 CE 

 C12D 
 898 km2 

1965–1990 
WR90 –29.3 –30.8 0.68 0.65 –25.9 –20.5 0.60 0.60 

 IDW(org1) 10.2 –13.6 0.71 0.71 123.8 13.6 0.67 0.61 
 IDW(corr1) –23.2 –38.6 0.72 0.65 30.1 –20.9 0.64 0.63 
 1991–2000         
 IDW(org2) 14.3 –15.9 0.58 0.57 58.5 24.1 0.68 0.23 
 IDW(corr2) –62.3 –49.8 0.76 0.56 –87.8 –2.7 0.68 0.02 
 D32A-J 
 8330 km2 

1980–1990 
WR90 14.6 6.8 0.91 0.89 –70.4 –33.3 0.57 0.48 

 IDW(org1) 52.0 14.3 0.89 0.84 –90.5 –34.5 0.47 0.26 
 IDW(corr1) –22.2 –93.5 0.26 0.24 –64.7 –39.2 0.44 0.38 
 1991–2000         
 IDW(org2) 439 207 0.51 –6.9 135 –48.9 0.22 –0.87 
 IDW(corr2) 19.0 –15.4 0.68 0.67 31.0 –25.7 0.42 0.35 
 G10A-C 
 609 km2 

1966–1990 
WR90 20.4 6.7 0.90 0.86 15.9 –15.6 0.84 0.77 

 IDW(org1) –36.4 –41.6 0.80 0.62 –9.8 –18.7 0.80 0.77 
 IDW(corr1) 17.3 4.7 0.83 0.80 14.0 –15.0 0.80 0.74 
 1991–2000         
 IDW(org2) –33.9 –38.9 0.81 0.65 –18.4 12.8 0.79 0.50 
 IDW(corr2) 11.0 5.1 0.80 0.77 –2.1 22.9 0.79 0.68 
 K40A 
 87 km2 

1961–1990 
WR90 8.9 –21.2 0.65 0.65 –33.0 –12.8 0.65 0.60 

 IDW(org1) 32.4 14.4 0.77 0.66 –35.1 8.6 0.66 0.47 
 IDW(corr1) –4.4 –30.1 0.76 0.73 –12.8 4.3 0.67 0.62 
 1991–2000         
 IDW(org2) 47.2 50.6 0.71 0.13 –23.7 30.8 0.61 0.26 
 IDW(corr2) 6.6 –5.9 0.69 0.68 1.2 17.5 0.62 0.47 
 X31A 
 174 km2 

1959–1990 
WR90 9.3 3.5 0.85 0.82 3.8 –1.1 0.85 0.82 

 IDW(org1) 28.2 31.6 0.86 0.59 9.0 4.1 0.84 0.70 
 IDW(corr1) 8.4 –1.2 0.84 0.82 4.4 –6.7 0.83 0.80 
 1991–2000         
 IDW(org2) 39.7 23.8 0.81 0.52 17.1 –8.6 0.87 0.62 
 IDW(corr2) 10.7 –12.1 0.75 0.74 8.9 15.7 0.83 0.76 
Bold values indicate improvement in statistics after transformation; IDW_org represent originally 
interpolated time series and IDW_corr represent corrected time series. IDW(org1)/(corr1) represents data 
period up to 1990; IDW(org2)/(corr2) represents data period from 1991–2000. 

 
topographically complex group of sub-basins G10A-C. The simulation statistics of the transformed 
(corrected) data are at least as good as the WR90 flows for most of the sub-basins (e.g. D32J, 
X31A and K40A) as shown in Table 4. While the overall observation is that the 
correctionprocedure applied here has demonstrated to be useful in improving spatial rainfall 
estimates, there are examples where it has not worked (e.g. C12D) and this is probably related to 
the limitations of the procedure when correcting non-overlapping data periods. The entire WR90 
rainfall time series (1920–1990) could not be considered representative of the climate over the 
extended period 1991–2000. The selection of an appropriate period within the WR90 rainfall 
series that was used to derive the destination rainfall frequency curves was done by visually 
identifying a period within 1920–1990 that was climatically similar to the 1991–2000 periods 
using both the WR90 simulated flows and DWAF observed flows, assuming stationarity in the 
records. This process is subjective and may not be able to remove all the uncertainties in the final 
rainfall estimations. 
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DISCUSSION AND CONCLUSIONS 
There is little doubt that in many developing countries declining raingauge networks make it 
increasingly difficult to define the primary input (rainfall) to water resources estimation models. 
Trend analysis of the original IDW spatially interpolated raingauge data showed that in some 
situations (e.g. for G10A sub-basin) different raingauge densities covering different time periods 
may introduce false trends in rainfall time series. However, when individual raingauges with long 
records were examined, no real trends were observed. When compared to WR90 data for a 
common period (1920–1990), there is evidence that information from the available raingauge data 
is more important than the spatial interpolation approach and this issue became critical when the 
extended period (1991–2000) was considered due to a further decline in the number of active 
raingauges. The uncertainty in spatial rainfall generation appears to be mainly related to how 
representative the observation stations are for a particular sub-basin. An overall observation from 
the analysis is that there are situations where the use of reduced density networks with less 
information may result in poor estimates of spatial rainfall.  
 The effects of rainfall uncertainty on simulated runoff were assessed by forcing a rainfall–
runoff model with different rainfall realizations and comparing model outputs to observed flows. 
The results showed that correction of the original IDW interpolated spatial rainfall estimates 
resulted in significant improvements in model simulations (Table 4) for the extended period 
(1991–2000) in some of the example sub-basins (e.g. G10A), while in others there were marginal 
improvements (e.g. X31A) and the results were worse in others (C12D). For the calibration period 
(all available data up to 1990), most of the model results (Table 4) based on all rainfall realizations 
(including the corrected data) are not very different from each other, except for the sub-basins 
characterised by steep topography (G10A-C, K40A and X31A). The results suggest that simple 
correction procedures based on adjusting rainfall frequency characteristics can be used when 
information is lost through a reduction in raingauge network density. A similar approach has been 
used when new data products, such as radar and satellite, are integrated with ground-based 
raingauge data (Sawunyama & Hughes, 2008). The effects on model results of different rainfall 
inputs varied from region to region and some of the variations are dependent on the climate and 
basin physical properties. The implications of understanding the differences in rainfall variability 
and uncertainty are relevant to decision making. The knowledge of variability can guide decisions 
to re-open closed raingauges or to introduce more raingauges, while a knowledge of uncertainty 
can aid in determining areas where additional research (such as developing correction procedures), 
or alternative measurement techniques, or data products are needed to reduce the uncertainty. 
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