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Abstract Three homogeneous rainfall areas were identified within San Francisco River basin, located in 
Northeast Brazil, by analysing the rainfall frequencies through the global wavelet power spectra that provide 
an unbiased and consistent estimation of the true power spectrum of the time series. Such study was 
accomplished using data from 248 raingauges provided by the Brazil National Water Agency (ANA), for 
several years between 1938 and 2005, based on their geographical distribution. For each identified region, 
the standardized precipitation index (SPI) was forecast using a feed-forward artificial neural network (ANN) 
trained by the back-propagation algorithm. The results obtained show that: the ANN is a suitable tool for 
this type of forecast; the accuracy is improved when the time scales of the SPI index, as well as the lead 
times, are increased; and the final result was not influenced by the different hydrological zones.  
Key words wavelet; fuzzy; ANN; drought; hydrological zones 
 
 
INTRODUCTION  

About 50% of the more populous areas of the world are highly vulnerable to the drought. In 1967 
and 1992, droughts affected 50% of the 2.8 billion people affected by all natural disasters. As a 
function of the direct and indirect impacts of this phenomenon, 1.3 million human lives were lost, 
of a total of 3.5 million people who died due to natural disasters (Mishra & Desai, 2006). 
 In the USA, the current annual costs of droughts are greater than those of any other natural 
disaster. They are estimated at about US$6–8 × 109, distributed among agriculture sectors, trans-
portation, tourism and energy (NDMC, 2007). In Brazil, historical records of severe droughts can 
be observed, mostly, in the semi-arid region of northeastern states: Piauí, Ceará, Rio Grande do 
Norte, Paraíba, Pernambuco, Alagoas, Sergipe, Bahia, and in northern Minas Gerais. In order to 
reduce the population vulnerability to drought occurrence, meteorologists and hydrologists have 
been developing indices based on hydrometeorological variables, which are able to classify 
droughts in terms of their intensity. In general, these indices are used for drought analysis at 
different time scales. 
 McKee et al. (1993) developed the Standardized Precipitation Index (SPI) based on preci-
pitation deficit or excess quantification at different temporal scales (1, 2, 3, 6, …, 12 months), that 
reflect the drought impact in regions of different water availability (McKee et al., 1995). The SPI 
has been used worldwide (Guttman, 1999; Szalai & Szinell, 2000; Lloyd-Hughes & Saunders, 
2002; Giddings et al., 2005; Wu et al., 2005), and in Brazil, it is one of the methods recommended 
by the National Institute of Meteorology (INMET) to characterize precipitation anomalies. Since 
January 2002, the SPI has been calculated for the whole country and, recently, these results have 
been made available for the public in a map format at www.inmet.gov.br. 
 Some factors have contributed to the preference for using the SPI over other indices; for 
example, the SPI can be determined based on precipitation data only, so drought evaluation is 
possible even though other hydrometeorological variables are not available; its ease of computa-
tion; the versatility in quantifying the precipitation deficit at different time scales; the possibility to 
compare SPI values for different regions because it is a standardized index (Kim et al., 2006); and 
the fact that drought is evaluated for different time scales. 
 In addition to monitoring, the planning actions required to minimize drought effects require 
the forecast to have a certain amount of lead time. Nowadays, the development of appropriate tools 
for drought forecasting and warning remains a challenge. Traditionally, stochastic models were 
used to forecast drought based on temporal series methods. However, these models are basically 
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linear and have a limited capacity to capture the nonlinearity which is inherent in hydrological 
phenomena. 
 In recent decades, the ANN has been demonstrated to have a great capacity in modelling 
hydrological temporal series, proving to be a useful tool for forecasting natural phenomena. One of 
the aspects that has motivated the frequent use of ANNs in several scientific fields, particularly in 
forecasting studies of temporal series, is its proven capacity to adequately represent nonlinear 
variables. 
 Based on the reported studies, the SPI values for multiple time scales are computed for a 
semi-arid Brazilian watershed in order to evaluate the potential of ANNs in drought modelling, 
and to forecast using the SPI index. Moreover, using the global wavelet power spectra, hydro-
logical zones are determined in the basin, in order to evaluate the SPI forecast quality within 
distinct regions. 
 
 
MATERIALS AND METHODS 

Location of the study area 

The study area is San Francisco River basin, Brazil, which extends from the Serra da Canastra 
National Park, starting in São Roque de Minas city, to its outlet, between Alagoas and Sergipe 
states, over approximately 2700 km. San Francisco River basin occupies an area of 364 000 km2, 
between 7°00′ and 21°00′S and 35°00′ and 47°40′W. It has 10 sub-basins, which are numbered 
from 40 to 49. 
 
Selected data 

We selected 248 raingauges provided by the Brazil National Water Agency (ANA), with data from 
several years between 1938 and 2005, based on their geographical distribution. Data of these 
raingauges were used for the determination of hydrological zones using global wavelet power 
spectra. For each zone found, some raingauges were selected in order to compute the SPI index for 
different time scales and to evaluate the forecast quality of this index using ANN within different 
hydrological zones. Hydrological regionalization is a necessary tool in the basin, in order to help 
the decision-making process. However, regionalization is complicated because the rainfall, 
although within the same basin, can present different characteristics, which are not easily 
detectable due to the similarity of the hydrological regime. For the application of the selected 
ANN, we used data between the years 1971 and 2005, in which the period 1971–2000 was used 
for the calibration process and 2001–2005 for the forecasting. 
 
Standardized precipitation index (SPI) 

The value of SPI index (McKee et al., 1993) represents the number of standard deviations for the 
accumulated precipitation, for a specific scale of time (following a gamma probability distribution 
transformed to a normal distribution), that an event is above or below the mean. 
 The nature of the SPI allows an analyst to determine the rarity of a drought or an anomalously 
wet event at a particular time scale for any location in the world that has a precipitation record. A 
drought event occurs at the time when the value of SPI is continuously negative. The event ends 
when the SPI becomes positive. Table 1 provides a drought classification based on SPI. 
 The SPI is computed by fitting a probability density function to the frequency distribution of 
precipitation summed over the time scale of interest. Typically the time scales used are 3, 6, 9, 12 
or 24 months. This is performed separately for each month. Each probability density function is 
then transformed in to the standardized normal distribution. Once the relationship of probability to 
precipitation is established from historic records, the probability of any observed precipitation data 
point is calculated and used along with an estimate of the inverse normal to calculate the 
precipitation deviation for a normally distributed probability with mean of zero and standard 
deviation of unity. This value is the SPI for the particular precipitation data point. 
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Table 1 Classification of the SPI according to McKee et al. (1993). 
SPI values Category 
 2 and above Extremely wet 
1.5 to 1.99 Very wet 
1.0 to 1.49 Moderately wet 
–0.99 to 0.99 Near normal 
–1.0 to –1.49 Moderately dry 
–1.5 to –1.99 Severely dry 
–2 and below Extremely dry 
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Fig. 1 SPI time series for 12 months time scale (SPI-12).  

 
 
 In order to compute the SPI series, a computational program was developed in a MatLab 
environment, based on the drought index references, e.g. Mckee et al. (1993, 1995). Figure 1 
illustrates the computed SPI-12 time series. 
 
Wavelet transform 

Wavelet analysis maintains time and frequency localization in a signal analysis by decomposing or 
transforming a one-dimensional time series into a diffuse two-dimensional time-frequency image 
simultaneously. Then, it is possible to get information on both the amplitude of any “periodic” 
signals within the series, and how this amplitude varies with time. 
 The wavelet analysis is based on a study of the signal convolution f(t) with successive 
functions, representative of different scales, the wavelet functions gab(t). The shape of each of 
these functions is obtained from a primary function, previously defined, commonly called mother 
wavelet g(t): 
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where a (always >0) is the time scale (a smaller scale corresponds to a higher frequency) and b 
corresponds to the different moments over time. Thus, the wavelet transform (W) is defined as:  
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in which the denominator term a  is an energy normalization factor of each wavelet W(b,a) in 
order to maintain the same energy of the main wavelet. Equation (2) reflects the main innovation 
in the wavelets, the possibility of transforming a time series in a space of two parameters (a,b) that 
reflects the local measure on the scale of variability with the scale at the moment b. This definition 
differs from the equivalent definition of the Fourier transform that gives us only an average range 
for each scale (frequency or period) of the variability throughout the area. Therefore, two very 
different signals can have a very similar power spectrum dominated by the same peaks. That is, a 
simple signal that changes often in the middle of the series and another signal superimposing two 
frequencies throughout the series would have a power spectrum with two frequencies. Thus, 
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without any additional knowledge in advance, it would be impossible to affirm which of the two 
signals produced each of the power spectra. Indeed, all the information on the temporal evolution 
of the signal is lost when applied the Fourier analysis, which is not the case when applying the 
wavelet analysis. These limitations have a strong incentive for the development of analysis by 
wavelets. On the other hand, the global wavelet spectra provide an unbiased and consistent 
estimation of the true power spectrum of the time series, and thus they are a simple and robust way 
to characterize the time series variability. 
 
Artificial neural networks 

An artificial neural network (ANN) is a mathematical model based on biological neural networks. 
It consists of an interconnected group of artificial neurons, and processes information using a 
connectionist approach to computation. In most cases, an ANN is an adaptive system that changes 
its structure based on external or internal information which flows through the network during the 
learning phase. In more practical terms, neural networks are nonlinear statistical data modelling 
tools. Thus, they can be used to model complex relationships between inputs and outputs. 
 Although, several ANN models have been proposed, the most popular for time series fore-
casting is the multi-layer feed-forward network. One of the reasons for that is its capacity of 
universal approach and its flexibility to solve great class problems, including standard recognition, 
signal processing, control and optimization, classification and forecast problems of time series, 
although a more robust optimization technique, such as the genetic algorithm (Santos et al., 2003), 
can be used. 
 ANN application basically consists of three steps: network architecture definition, network 
learning, and network verification. The architecture is defined basically by the number of layers, 
number of neurons per layer, type of connection between layers (activation functions), and the 
type of network. The learning process consists of supplying the network with an example set and 
changing their weights until the network is able to represent well the relationship between input 
and output data. One of the most commonly-used algorithms for ANN learning is the error back-
propagation algorithm, which is applied in the present paper. Finally, in the verification process, 
the network is simulated for a data set which was not used during the learning process. The results 
are then compared with the observed data in order to verify whether the trained network is able to 
generalize the results obtained during the learning process. 
 
Developed forecasting model 

An ANN multi-layer feed-forward network was built to provide p future values (SPIt+1 SPIt, SPIt+2, 
..., SPIt+p) based on previous values (SPIt, SPIt–1 , ..., SPIt–m), in which t represents the current time. 
In the proposed ANN, only one hidden layer was considered, with a tangent sigmoid activation 
function between the input and hidden layers, and a linear activation function between hidden and 
output layers. Figure 2 shows a typical layout of the proposed ANN to a forecast horizon of two 
months, using three values of SPI as previous input. 
 The number of neurons in the input (m + 1) and hidden layers was defined by means of 
previous tests, when the number of neurons was gradually increased in each layer and the obtained 
error was observed in the learning process for each configuration. Since the smaller error was 
observed with three neurons in the input layer and 15 neurons in the hidden layer, this architecture 
was adopted for the present study. No improvement in the results was observed when the number 
of neurons was larger than this. 
 For the SPI index forecast, an output neuron quantity (p) is used corresponding to the number 
of months it was required to forecast, in which the last output neuron was the forecast value for the 
desired month horizon. Thus, a model was built for each evaluated ANN forecasting horizon. In 
this type of strategy, used in forecasting and referred to as the direct approach, the values of the 
variable under study are expected for p steps ahead. The advantage of this strategy is that the 
errors of predicted values are not accumulated for the next forecast. 



Celso Augusto G. Santos et al. 
 

306 

 
Input 
layer 

Hidden 
layer 

Output 
layer 

 
 
 
 
 
 
 
 
 
 
 

 

SPI t-1 

SPI t

SPI t-2 
SPI t+1 

SPI t+2 

Forecast point for a two-
month horizon, because two 
output neurons were used. 

Fig. 2 ANN model in which the output neurons quantity corresponds to the wished forecast month 
quantity, in which the last output neuron is the forecasted value for the wished month horizon. 

 
 
 For the computed deviation in each forecast, the mean square error (E) was used, as calculated 
by: 
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in which SPI i is the SPI value,  is the forecast value and n is the number of forecast points. iIP̂S
 
 
RESULTS AND DISCUSSION 
Determination of the hydrological zones 
For the studied basin, the results are similar of those of Fig. 3, which depicts the case of raingauge 
no. 1845004, located at sub-basin 40. Figure 3(a) shows the raw data for the precipitation, 
Fig. 3(b) shows the wavelet power spectrum, Fig. 3(c) shows the scale-average wavelet power 
over the 8 to 16-month band, and Fig. 3(d) shows the global wavelet power spectrum. 
 Figure 3(b) shows the power (absolute value squared) of the wavelet transform for the 
monthly rainfall at raingauge no. 1845004 presented in Fig. 3(a), which is a record from 1975 to 
2005. The (absolute value)2 gives information on the relative power at a certain scale and a certain 
time. This figure shows the actual oscillations of the individual wavelets, rather than just their 
magnitude. Observing Fig. 3(b), it is clear that there is more concentration of power between the  
8 to 16-month band, which shows that this time series has a strong annual signal. The variance of 
power in the 8 to 16-month band (also confirmed later by Fig. 3(c)) also shows the dry and wet 
years; i.e. when the power decreases substantially in this band, it means a dry year and when the 
power is maximum it is a wet year. For example, a dry period can be identified between 1984 and 
1990 followed by a wet period until the beginning of 1992. An extreme reduction in power can 
also be found between the years 1992 and 1999, which corresponds to a dry year followed by a 
wet period until 2004.  
 The global wavelet spectra provide an unbiased and consistent estimation of the true power 
spectrum of the time series. For example, one peak well above the others can be seen in Figs 3(d) 
and 4(a), which indicates that there is an annual frequency, but other raingauges have two or more 
peaks instead of one as shown in Fig. 4(b). Following the analogy to the other selected raingauges 
within the basin, it was possible to identify the two main patterns of global wavelet power spectra: 
Pattern A with one main annual frequency (Fig. 5(a), (c) and (e)) and Pattern B with more than one 
main frequency (Fig. 5(b), (d) and (f)). From which three distinct hydrological zones (referred to 
herein as Region A, Region B and transition zone) were identified, as shown in Fig. 6. 
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Fig. 3 (a) Monthly rainfall at raingauge no. 1845004 for the 1975–2005 period. (b) The wavelet power 
spectrum using Morlet mother wavelet. The contour levels are chosen so that 75, 50, 25 and 5% of the 
wavelet power is above each level, respectively. (c) Scale-average wavelet power over the 8–16-month 
band. The dashed line is the 90% confidence level assuming red-noise. (d) The global wavelet power 
spectrum. The dashed line is the 10% significance level for the global wavelet spectrum, using a red-
noise background spectrum. 

 
 
Forecast of the SPI 
After determination of the three hydrological zones using the wavelet global spectra, the SPI time 
series were computed for the scales of 3, 6, 9 and 12 months, in each hydrological zone. Following 
the SPI time series calculation, using the described ANN, the SPI was forecasted for a horizon of 1 
to 6 months. The mean square errors obtained in the forecasts are shown in Table 2. 

Time (years) 

R
ai

nf
al

l (
m

m
) 

(a) 

Time (years) 

(b) 

Pe
rio

d 
(m

on
th

s)
 

A
ve

ra
ge

 p
ow

er
 (m

m
2 ) 

× 
10

4 

Power (mm2) × 105

(d) 

(c) 

Time (years) 



Celso Augusto G. Santos et al. 
 

308 

 
 

Power (mm)2 Power (mm)2 
0.5 1.5 1 2 2 3 4 1 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 (a) Global wavelet power spectrum Pattern A, which is characterized by one main frequency at 
8–16 months. (b) Global wavelet power spectrum Pattern B, which is characterized by two or more 
main frequencies, e.g. at 8–16 months and 64–128 months. 

 
 
 
Table 2 Mean square error for the forecast of SPI in the three defined hydrological zones. 

 1 month 2 months 3 months 4 months 5 months 6 months 
Region A:       
SPI-3 0.385 059 0.534 689 0.697 200 1.031 891 0.852 789 1.133 691 
SPI-6 0.177 593 0.232 635 0.463 801 0.483 741 0.741 133 0.695 334 
SPI-9 0.230 009 0.408 880 0.226 241 0.340 322 0.592 321 0.762 938 
SPI-12 0.107 028 0.271 423 0.250 424 0.228 107 0.293 423 0.261 219 
Transition zone: 
SPI-3 0.695 870 1.948 702 1.948 702 1.611 778 1.481 205 1.326 161 
SPI-6 0.454 619 0.816 986 1.378 087 1.538 248 1.828 336 1.422 181 
SPI-9 0.324 792 0.609 811 0.825 017 1.069 271 0.964 212 1.019 718 
SPI-12 0.113 656 0.140 329 0.372 329 0.438 147 0.612 805 0.629 826 
Region B: 
SPI-3 0.587 873 1.282 542 1.684 702 1.933 310 1.820 806 1.224 206 
SPI-6 0.513 189 0.553 021 1.306 867 4.162 345 1.893 579 4.454 624 
SPI-9 0.319 986 0.375 936 1.010 807 0.853 261 0.763 810 1.384 081 
SPI-12 0.187 253 0.227 718 0.432 096 0.484 548 0.516 106 0.386 680 
 
 
 
 Analysing the obtained errors, it is possible to see that the result precision increases as the SPI 
time scale increases. It may be seen that the forecast effectiveness is lower in SPI-3, reaching the 
best result in the forecast for SPI-12. This is due to the high temporal variability in precipitation in 
SPI-3, while for the other scales, this variability is attenuated because more monthly data could be 
collected. Thus, while the SPI time scale increases, the SPI forecast is improved. It is also possible 
to see that, when the month horizon forecast is increased, a significant increase in the mean square 
error occurs, which is very common in forecasting models. In Figs 7 and 8 the forecast SPI for the 
9- and 12-month time scales are shown, for 1 to 2 months in the three studied regions. It can be 
observed that there are no significant differences in the forecast model performance when the 
hydrological zone is changed, which shows that the forecast SPI using the proposed ANN is not 
strongly affected by the rainfall regime of the region. 
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Fig. 5 Global wavelet power spectra: (a,) (c) and (e) for Region A, located in the southern part; and (b), 
(d) and (f) for Region B, located in the northern part. 
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Fig. 6 The raingauges within San Francisco River basin region, according to the pattern of their global 
wavelet power spectra. 
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Fig. 7 The SPI-9 and SPI-12 forecast for one month (left) and two months (right): (a)–(d) for Region A, 
and (e)–(h) for the transition zone. 
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Fig. 8 SPI-9 and SPI-12 forecast for one and two months for Region B. 

 
 
CONCLUSIONS 

Based on the applied methodology and on the results obtained, we can conclude that the proposed 
ANN proved to be an effective tool in drought forecasting, and that significant influences of the 
rainfall pattern of the region were not observed in the results. Data from 248 raingauges were 
analysed and the results of the overall power spectra showed a high annual frequency throughout 
the basin; however, other frequencies are present with minor significance which represent changes 
in the rainfall regime. Although, the computed global wavelet power spectra presented this annual 
frequency, they showed peculiar patterns which could be used to characterize the region. Thus, 
three sub-regions with homogeneous rainfall patterns were identified as: Region A with frequency 
pattern A (south part of the basin); Region B with frequency pattern A (north part of the basin); 
and a transition zone at the central part just between both regions A and B with frequency patterns 
A and B. Analysing the obtained forecast errors, it is possible to verify that, for 1 month forecast, 
the indices from 3 to 12 were satisfactory, in which SPI-12 is the most adequate for the forecast. 
For longer forecasting from three to six months, only SPI-12 presented consistent results and the 
other indices could be considered inadequate for those horizons, since SPI-12 translates the rainy 
pattern of the region taking into account longer time scales. However, for the forecast of 3, 4, 5 
and 6 months, the results obtained by ANN were not able of represent the drought tendency in the 
region, even when it was used SPI-12. Bearing in mind that the drought is a phenomenon that 
reaches great part of the world population, not only in northeastern Brazil, this type of work 
contributes to significantly understand this phenomenon, which could facilitate the implementation 
of political actions to fit the real climatic conditions. Further investigations will be able to embody 
other kinds of ANN, besides other rainfall data and climatological variables, also using GIS and 
remote sensing techniques, as proposed by Silva et al. (2007). 
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