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Abstract Regional precipitation frequency analysis (RPFA) is widely used for predicting precipitation 
quantiles at target sites in data-sparse areas. The RPFA involves fitting a frequency distribution to 
information pooled at target site from a region (group of similar sites). Conventional approaches to RPFA 
use precipitation statistics as attributes to form regions. Therefore, sufficient number of sites with 
contemporaneous data is required to form meaningful regions. This requirement cannot be met in data sparse 
areas. To address this issue, an approach is presented in this paper. Large-scale atmospheric variables 
affecting precipitation in the study area, location parameters (latitude, longitude and altitude) and seasonality 
of precipitation are suggested as attributes to form regions using fuzzy cluster analysis, and precipitation 
statistics are suggested for use in validating the delineated regions for homogeneity. Results from application 
to India indicate that the approach is effective for RPFA in data-sparse areas. 
Key words  regionalization; precipitation frequency analysis; fuzzy cluster analysis; large-scale atmospheric variables; 
India 
 
 
INTRODUCTION 

Effective prediction of the amount and frequency of precipitation is necessary for a wide range of 
applications that include design of irrigation projects, and investigating the frequency and spatial 
distribution of meteorological droughts. Regional precipitation frequency analysis (RPFA) is a 
potential alternative to at-site frequency analysis models for predicting precipitation quantiles at 
target sites in data-sparse areas. The RPFA involves fitting a frequency distribution to information 
pooled at the target site from a region (group of sites having similar precipitation characteristics). 
The process of identifying the region is called regionalization. 
 The past four decades have witnessed extensive research in regionalization of precipitation. 
The approaches that have been developed include elementary linkage analysis, spatial correlation 
analysis, common factor analysis, empirical orthogonal function analysis, principal component 
analysis (PCA), cluster analysis, and PCA in association with cluster analysis. Discussion on these 
approaches can be found in Satyanarayana & Srinivas (2008). In several past studies, the attributes 
that have often been used for regionalization of precipitation include statistics computed from 
precipitation data (e.g. mean, cross-correlation of annual/seasonal/monthly/daily precipitation; mean 
number of wet days). Therefore, a sufficient number of sites with contemporaneous data is 
required to form meaningful regions, and it may not be possible to arrive at effective regions in 
data-sparse areas. Moreover, validation of the identified regions for homogeneity is not possible, 
since the use of the same precipitation statistics to form regions and subsequently to test their 
homogeneity, is meaningless. Furthermore, it is not possible to identify regions for ungauged sites, 
because the attributes (precipitation statistics that are necessary to identify region) are unknown.  
 To address the aforementioned issues, an approach is proposed by Satyanarayana & Srinivas 
(2008), wherein large-scale atmospheric variables (LSAV) affecting precipitation in a region and 
location attributes (latitude, longitude and altitude) are suggested as features for regionalization by 
K-means cluster analysis, and the delineated regions are independently validated for homogeneity 
using the L-statistics of the observed precipitation. The present study extends the idea of the 
previous study (Satyanarayana & Srinivas, 2008) to frequency analysis of annual precipitation in 
data-sparse areas using fuzzy cluster analysis. The LSAV affecting precipitation at sites in the 
study area, location attributes and seasonality (i.e. average time of occurrence) of maximum 
monthly precipitation are suggested as features for regionalization using fuzzy c-means (FCM) 
cluster analysis. Effectiveness of the proposed approach is illustrated through application to India. 
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⎤ ∈ℜ⎦

METHODOLOGY 

Suppose there are N sites in the study area. Identify n attributes affecting precipitation at each site, 
such as LSAV affecting precipitation, location attributes and seasonality of precipitation at the 

sites. Let , denote ith feature vector depicting ith site in n-

dimensional attribute space. y
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ji is jth attribute. Rescale the feature vector as: 

( )
         for  1 ;  1ji j

ji
j

y y
x i N j n

σ

−
= ≤ ≤ ≤ ≤  (1) 

where x  denotes the rescaled value of y ; σ  represents the standard deviation of attribute j, and ji ji j

jy  is the mean value of attribute j over all the N feature vectors. Rescaling the attributes is 
necessary to nullify the differences in their variance and relative magnitude. Use FCM algorithm 
to partition the matrix X containing rescaled feature vectors into c fuzzy clusters. The objective 
function and constraints of FCM algorithm are given by equations (2) and (3), respectively: 
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where uik ∈[0, 1] denotes the membership of ith rescaled feature vector xi in the kth fuzzy cluster; 
U is the fuzzy partition matrix which contains the membership of each rescaled feature vector in 
each fuzzy cluster; the parameter μ∈(1, ∞ ) refers to the weight exponent for each membership, 
and is known as fuzzifier; ( )1 k c, , ,=V v v vK K  represents a matrix of centroids of clusters where 
vk denotes centroid of kth cluster; d2(xi, vk) is the distance from xi  to vk. 
 The iterative procedure of FCM algorithm (Bezdek, 1981) is summarized below: 
(a) Initialize fuzzy partition matrix U using a random number generator. Let  denote 

membership of x

init
iku

i  in cluster k. 
(b) Adjust the initial memberships  as: init
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(c) Compute the fuzzy cluster centroid vk for k = 1,2, … , c  as:  
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(d)  Update the fuzzy membership uik as:  
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Repeat steps (c) and (d) until change in the value of the memberships between two successive 
iterations becomes sufficiently small. Obtain different sets of clusters by varying c and μ. 
Subsequently, determine the optimal set of clusters using Xie-Beni fuzzy cluster validity index 
(Xie & Beni, 1991), computed as: 
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 To form fuzzy clusters, assign each site to cluster(s) in which it has membership greater than 
or equal to a threshold Ti, computed using equation (8), following Srinivas et al. (2008) and Rao & 
Srinivas (2008): 
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 The fuzzy clusters identified using the foregoing procedure need to be evaluated for statistical 
homogeneity using homogeneity tests. In the current study, the Hosking & Wallis (1997) test is 
considered. The test is based on the idea that in a homogeneous region, all sites are supposed to 
have the same population L-moment ratios [LMRs: coefficient of L-variation (L-CV), L-skewness 
and L-kurtosis]. However, their sample L-moment ratios may be different due to sampling 
variability. In this test, a region k having Nk sites is defined as acceptably homogeneous or possibly 
heterogeneous or definitely heterogeneous, based on the error induced because of sampling 
variability. The error is computed using three heterogeneity measures (HMs), H1, H2 and H3. A 
region can be regarded as “acceptably homogeneous” if HM < 1, “possibly heterogeneous” if 1 ≤ 
HM < 2, and “definitely heterogeneous” if HM ≥ 2. The values of H2 and H3 rarely exceed 2, even 
for grossly heterogeneous regions, and hence lack power to discriminate between homogeneous 
and heterogeneous regions. Consequently, H1 is considered to be superior to H2 and H3 (Hosking 
& Wallis, 1997). Among the delineated fuzzy clusters, adjust heterogeneous clusters to improve 
their homogeneity by eliminating sites that are grossly discordant with respect to other sites. 
Identify the grossly discordant site(s) using the discordancy measure of Hosking & Wallis (1997) 
(not shown due to lack of space). Further, verify if the eliminated sites from a region can be 
considered as a new region. After adjustments, if a site i belongs to )(iR′  of the R regions, the 
memberships of the site in each of the )(iR′  regions has to be updated using equation (9): 
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where ∈[0, 1] denotes the updated membership of the ith site in the kth fuzzy region. If a site 
belongs to only one fuzzy region, the membership of the site in that region has to be updated to 1, 
and its membership in all other regions has to be updated to zero. 

iku′

 
Prediction of annual precipitation quantiles and performance assessment 
Prediction of the annual precipitation quantile of T-years recurrence interval at any site in a region 
k is based on pooled information from all sites in the region. For this purpose, identify the regional 
frequency distribution to fit the pooled regional information using L-moment based goodness of fit 
(GOF) test of Hosking & Wallis (1997). Determine a dimensionless quantile function (known as 
regional growth curve) for each region. Subsequently, estimate regional precipitation quantile 

 at site i for T-year recurrence interval using equation (10), based on the index flood method 
(Dalrymple, 1960; Srinivas et al., 2008). 
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where iP  is the mean annual precipitation at site i;  is the growth curve ordinate of region k 
for T-year recurrence interval.  is the number of regions in which site i has partial 

memberships;  is updated membership of ith site in kth fuzzy region. Readers are referred to 
Hosking & Wallis (1997) for further details on the GOF test and growth curve estimation. 
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 Performance of the proposed method in predicting quantiles of annual precipitation is 
assessed using two performance measures, namely, the average relative bias (Average R-bias) and 
relative root mean square error (R-RMSE). The equations can be found in Satyanarayan & Srinivas 
(2008). Minimum values of these measures indicate better performance. 
 
 
CASE STUDY 
The study area India lies between latitude 8°4' and 37°6' north, and longitude 68°7′ and 97°25′ east, 
and has an area of 3 287 263 km2. It receives average annual precipitation of 117 cm and more 
than 80% of the annual rainfall during June–September. Heavy rainfall is confined largely to the 
Western Ghats and the northeastern parts of the country. The central region and Gangetic plain 
receive moderate rainfall, while the northwestern part receives low rainfall.  
 For the study, high-resolution gridded daily rainfall data for the period 1951–2004 procured 
from the India Meteorological Department (IMD) (Rajeevan et al., 2005) were considered. 
Parthasarathy et al. (1993) found no systematic trend in the all India precipitation in a study 
covering the period 1871–1990. The gridded re-analysis data of the monthly mean atmospheric 
variables (listed in Table 1), which influence precipitation in the study area (Anandhi et al., 2008), 
were extracted from database of the National Centers for Environmental Prediction (NCEP) 
(Kalnay et al., 1996), for the period 1951 to 2004 from the website http://www.cdc.noaa.gov. The 
spatial domain of the extracted data ranges from 47.5°N to 0° latitude, and 57.5°E to 110°E 
longitude at a spatial resolution of 2.5°. The re-analysis data was re-gridded to 1° × 1° IMD grid 
resolution using Grid Analysis and Display System (GrADS; Doty & Kinter, 1993). For the 
analysis, the atmospheric variable at each pressure level was considered as a separate variable. 
Thus, there are a total of 15 atmospheric variables. 
 The average elevation of terrain in each of the IMD grid boxes was computed from Shuttle 
Radar Topography Mission (SRTM) data processed by the Consortium for Spatial Information of 
the Consultative Group for International Agricultural Research (CGIAR-CSI; http://srtm.csi.cgiar.org). 
 
Table 1 The list of atmospheric variables considered for regionalization. 
Site no. Variable name Pressure levels (in kPa) 
1 Air temperature 92.5, 70, 50, 20 
2 Geopotential height 92.5, 50, 20 
3 Specific humidity 92.5, 85 
4 Zonal wind 92.5, 20 
5 Meridional wind 92.5, 20 
6 Surface pressure - 
7 Precipitable water - 

RESULTS AND DISCUSSION 
To delineate homogeneous annual precipitation regions in India, 294 out of 357 (1° × 1°) IMD 
grid boxes covering the study area were considered. The discarded 63 grid boxes are in the 
Himalayan mountain region where some of the pressure levels (e.g. 92.5 kPa) considered for 
atmospheric variables are not defined at several locations. The spatial domain of the 15 atmospheric 
variables (listed in Table 1), which influence precipitation in each IMD grid box, was chosen as 25 



Regional frequency analysis of annual precipitation in data-sparse regions  
 

317

IMD grid points surrounding it. Further, to reduce the problem of high dimensionality, the mean 
monthly values of each of the 15 atmospheric variables were computed at each IMD grid point. 
Thus 4500 values (15 variables × 25 grid points × 12 months) were obtained for each of the 294 
IMD grid boxes. Several of the atmospheric variables are correlated and convey similar 
information. Therefore to avoid redundancy, four principal components (PCs), which are 
orthogonal and preserve more than 97% of the variance, were extracted from the 4500 values. 
Seasonality of maximum precipitation in each of the IMD grid boxes was computed using the 
middle day of a 30-day maximum precipitation in each year. The procedure was based on 
seasonality measures defined in Burn (1997). 
 A feature vector representing each IMD grid box was prepared using its four PCs, seasonality 
of maximum precipitation and location attributes (latitude, longitude, and average elevation of 
terrain). The 294 feature vectors, thus formed, were partitioned into fuzzy clusters using the FCM 
algorithm. As the exact number of regions is not known a priori, the algorithm was executed by 
varying the number of clusters c from 2 to 25, with an increment of 1, and the value of fuzzifier μ 
from 1.1 to 3.0 with an increment of 0.1. The resulting clusters are plotted on the map of India for 
visual interpretation. Further, the Xie-Beni cluster validity index (equation (7)) was computed to 
determine optimal partition consisting of plausible homogeneous precipitation regions. The 
foregoing analysis suggested c = 20 and μ  = 1.9 as optimal partition.  
 The statistical homogeneity of each of the 20 clusters in optimal partition was tested by 
computing HMs using annual precipitation data at 1° × 1° grid points in it (Fig. 1(a)). The results 
showed that six clusters were acceptably homogeneous, one cluster was possibly heterogeneous, 
and the remaining 13 clusters were definitely heterogeneous. All the heterogeneous clusters were 
adjusted to improve their homogeneity following the procedure described in the methodology 
section. Twenty-two regions and 13 unallocated sites were obtained after adjustments (Fig. 1(b)). 
Among the regions, those numbered 21 and 22 were formed by using sites eliminated from 
clusters 1 and 20, respectively. The characteristics of the 22 regions are given in Table 2. It can be 
noted that regions, 8, 13, 18, 21 and 22 are possibly heterogeneous and the remaining 17 regions 
are acceptably homogeneous. 
 

 

  

 (a) (b) 

Fig. 1 (a) Annual rainfall clusters in optimal partition; the 1° × 1° IMD grid points in each cluster are 
shown by a different symbol. (b) Homogeneous annual rainfall regions formed by adjusting the clusters 
shown in (a). 
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 To predict annual precipitation quantiles at any of the sites in a region, a frequency 
distribution suitable to fit the pooled regional information was identified using the L-moment 
based regional goodness-of-fit (GOF) test of Hosking & Wallis (1997). For this purpose, the 
frequency distributions considered were Generalized logistic (GLO), Generalized extreme value 
(GEV), Generalized Pareto (GPA), Generalized normal (GNO), Pearson type III (PE3), and 
Wakeby. Among the distributions accepted at the 90% confidence level for each region, the 
distribution for which the GOF measure is sufficiently close to zero was selected for estimation of 
growth curve ordinates for use in equation (10). It is found that the Wakeby distribution is suitable 
to fit pooled information of regions in northeast and central northeast India. The GNO distribution 
is suitable to fit pooled data in Tamil Nadu and north Uttar Pradesh. The GEV distribution 
(followed by GNO and PE3 distributions) are found suitable to fit data in Gujarat and Rajasthan. 
For the rest of India, the GLO distribution is found suitable. The frequency distributions of rainfall 
vary across India, owing to variation of climate and geographical conditions influencing rainfall. 
 To assess the potential of the proposed method in predicting quantiles of annual precipitation, 
Average R-bias and R-RMSE were computed. For determining at-site estimates of T-year 
precipitation quantiles, GOF of various hydrological distributions to at-site annual precipitation 
data in the study region was performed by Kolmogorov-Smirnov and Chi-squared tests 
considering the 90% confidence level. The distributions considered for this purpose were Normal 
(N), 2-parameter Gamma (G2), GLO, GEV, GPA, GNO and PE3. The method of probability 
weighted moments was used for parameter estimation. The Average R-bias and R-RMSE computed 
are presented in Table 3 for recurrence intervals: 2, 5, 10, 25, 50, 100 and 250-years, for brevity. A 
negative value of Average R-bias indicates that regional estimates of precipitation quantiles are 
greater than at-site estimates. It can be noted from Table 3 that Average R-bias is generally 
negative, and the values of Average R-bias and R-RMSE increase with return period. The value of 
Average R-bias varies from +0.13% to –4.46%, whereas the value of R-RMSE varies from 2.19% 
to 13.28%. Small values of Average R-bias and R-RMSE indicate that the approach is effective in 
predicting precipitation quantiles. 
 
Table 2 Characteristics of the annual rainfall regions. 
CN CS H1 CN CS H1 CN CS H1 CN CS H1

1 15   0.98 7 8 –0.05 13 10 1.08 19 12   0.99 
2 10   0.42 8 20   1.20 14 19 0.59 20 15   0.68 
3 13   0.51 9 8   0.70 15 18 0.02 21 5   1.25 
4 10   0.96 10 17 –0.21 16 13 0.19 22 3 –1.85 
5 15   0.75 11 19   0.89 17 21 0.85    
6 20 –0.62 12 23   0.85 18 24 1.58    
CN: cluster number, and CS: cluster size (in number of IMD grid points). 
 
Table 3 Average R-bias and R-RMSE computed to assess the performance of the proposed method in 
predicting annual precipitation quantiles at 1° × 1° IMD grid points. 

Return period (years):  
Performance measure 2 5 10 25 50 100 250 
Average R-bias (%) 0.13 –0.38 –1.03 –1.94 –2.65 –3.39 –4.46 
R-RMSE (%) 2.19 5.73 7.35 8.33 9.21 10.65 13.48 

SUMMARY AND CONCLUSIONS 
The conventional approaches to RPFA use statistics of precipitation as attributes to form regions 
for pooling information. Consequently, they may not be useful to form meaningful regions in data-
sparse areas. Besides this, regions delineated using precipitation statistics cannot be independently 
validated for homogeneity in precipitation. To alleviate these problems, a fuzzy RPFA approach is 
proposed. The LSAV, location parameters and seasonality of rainfall are suggested as features for 
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regionalization using FCM cluster analysis. The seasonality of precipitation in an area can be 
reliably obtained from local inhabitants, even at ungauged sites. The proposed approach allows 
independent validation of the identified regions for homogeneity by using statistics computed from 
the observed precipitation, and it has the ability to form regions even in areas where the raingauge 
density is sparse. The effectiveness of the proposed approach is illustrated through application to 
India. Overall, 22 regions are obtained, of which 5 are possibly heterogeneous and the remaining 
17 are acceptably homogeneous. Through L-moment based analysis it is shown that the approach 
is effective in predicting precipitation quantiles. The proposed method can be extended to 
prediction of precipitation quantiles at the daily time scale. This, however, requires identification 
of attributes influencing daily rainfall for delineation of regions that are homogeneous in frequency 
distribution of daily rainfall. Research in this direction is under way. Further, a simulated 
annealing-based FCM algorithm can be used instead of a conventional FCM algorithm to explore 
the possibility of arriving at global optimal set of regions. 
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