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Abstract In water resource planning in semi-arid Africa and comparable regions, uncertainty is high due to 
limitations in historic observations, uncertainty in hydrological models, uncertainty over future demands for 
water, and uncertain influences of future climate and hydrological change. The uncertainty in the future 
supply–demand balance should be considered in planning decisions, as it affects the risk associated with any 
planning option, and can help identify priorities for data collection. Focusing on rainfall and hydrological 
uncertainty, this paper outlines a framework of uncertainty analysis, which allows such consideration to be 
given. The framework consists of multi-site continuous time stochastic rainfall modelling to infill historic 
rainfall data. The stochastic infilling of rainfall data allows calibration of a hydrological model under input 
uncertainty. The rainfall model, together with the uncertain hydrological model, is then used to generate 
multiple realisations of reservoir inflow over a 100-year period. This framework is applied to the Upper 
Limpopo basin in Botswana, using 25 years of observed daily rainfall and flow data for model calibration. A 
generalised linear model was used for the rainfall and a semi-distributed version of the IHACRES model 
was used for the hydrology. A proposed 382 × 106 m3 reservoir at the outlet of this catchment, which is part 
of Botswana’s national water resource strategy, is re-evaluated in light of the extended inflow data and the 
estimated uncertainty. Results show that the uncertainty has a considerable effect on the reliability of the 
reservoir; for example, the proportion of time for which demand for water was not met ranged from 0 to 
13% over the different flow realisations. The main assumptions made, to be addressed in our future research, 
are stationarity of climate and that all the hydrological uncertainty arises from the historic rainfall 
uncertainty due to missing data. 
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INTRODUCTION  
Hydrological models are important tools for use in water resources planning and management. 
Their practical use includes, for example, flood and drought prediction, water resources 
assessment for reservoir design and operation, as well as climate change and land-use impacts 
assessment. Because of limited availability of the spatial data required to satisfy the demands of 
fully distributed physically-based hydrological models, many studies in the past have focused 
more on conceptual lumped models. This is particularly true in data-sparse semi-arid areas with 
lack of complete rainfall data of good quality and lack of good raingauge networks to capture the 
spatial variability resulting from highly localised rainfall. However, stochastic spatial-temporal 
rainfall models are increasingly becoming important tools for characterising rainfall in space and 
time which can be used to drive distributed hydrological models (Segond et al., 2006). Of 
particular importance to data-sparse areas, some of these models have the potential to quantify 
uncertainty due to missing values in the observed records (Yang et al., 2005; Kenabatho et al., 
2008). They can also be useful in generating long sequences of rainfall data needed to support 
planning of long-term water management strategies, as well as generating future rainfall fields by 
downscaling GCM outputs under scenarios of climate change (Charles et al., 2007; Burton et al., 
2008). However, the use of stochastically-generated rainfall fields to drive rainfall–runoff 
modelling and, hence, to support water resources planning is still limited, especially in semi-arid 
regions. Instead, criteria such as worst-drought-on-record or design droughts from simple 
frequency analysis are commonly used for design purposes. The aim of this paper is to test the 
performance of a rainfall–runoff model when driven by stochastically generated spatial–temporal 
rainfall, and to begin to assess the implications for reservoir design and operations within 
Botswana’s national water resource strategy. This is achieved by using a semi-distributed 
IHACRES model to generate reservoir inflows, driven by rainfall obtained from a generalised 
linear model (GLM) in a 7660 km2 semi-arid area in the upper Limpopo basin, Botswana. 
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The IHACRES model 
The IHACRES model, initially developed by Jakeman et al. (1990) for application in temperate 
catchments, has undergone several modifications to suit various applications. For example, it has 
been modified for use in ephemeral catchments (Ye et al., 1997), and for application in semi-
distributed modelling (Croke et al., 2006). The historical background of the model is well captured 
in the literature (Post & 1999, and references therein). The model has two modules, one nonlinear 
and the other linear. The nonlinear module converts rainfall (r) into effective rainfall (u), while the 
linear module converts effective rainfall into streamflow (q). This flow can be routed through any 
configuration of storages, in parallel or series (e.g. quick and slow flow) depending on the 
underlying hydrological processes of the area under investigation. The effective rainfall at each 
time step (k) is usually assumed to be proportional to catchment wetness index (w) as follows: 

kkk rwu =   (1) 

 The evolution of w with time can be represented as a proportion (α) of the rainfall in that time 
step (i.e. the increase), and the loss is a proportion (1/β) of the preceding estimate of w: 
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where β is estimated as an empirical function of air temperature T:  
)(' 'TTe −= γββ  (3) 

where β′ is a reference value of β at air temperature T = T′. For application to low yielding 
ephemeral rivers, the model was modified by introducing a threshold λ, and an exponent 
parameter ρ (Ye et al., 1995; Schreider et al., 1996): 

k
p
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The flow routing is represented by a linear transfer function corresponding to two linear reservoirs 
in parallel, i.e. the quick and slow flow responses with residence times kq and ks, respectively. 
However, for application to ephemeral rivers, a single reservoir may be adequate (Ye et al., 1997). 
It has been observed that although IHACRES model is widely used in semi-arid areas, there are 
limited studies which applied the model in a spatially distributed way (see review by McIntyre & 
Al-Qurashi, 2009) despite the high spatial rainfall variability associated with semi-arid areas. In 
semi distributed modelling, the IHACRES model is applied to each sub-catchment, and then the 
runoff from all the sub-catchments is integrated with a channel network model. For example, 
McIntyre & Al-Qurashi (2009) used a channel routing model with constant celerity parameter (c) 
to integrate the simulated runoff from 20 sub-catchments of the arid Wadi Ahin basin in Oman. 
The same channel routing model is used in our case study. 
 
 
CASE STUDY AREA 
Catchment description 
The study area has an area of 7660 km2 and is located within the Limpopo basin in northeastern 
Botswana, as shown in Fig. 1. The basin, shared between Botswana, South Africa and Zimbabwe, 
is critical in terms of water resources in Botswana, since all the major dams are located within it. 
Botswana’s recent national water resource strategy (Snowy Mountains Engineering Corporation & 
Engineering Hydrological Environmental Management Consultants, 2006) includes development 
of new reservoirs, including one at the outlet of the case study catchment, to increase security of 
supply. The catchment is gauged at five locations leading to five sub-catchments with the outlet 
located in sub-catchment 5 (Fig. 1). All the sub-catchments have flow data, except for sub-
catchment 4, where only the water level data are available. The area consists of gently undulating 
to highly variable altitude, with lowest and highest points at about 850 and 1400 m above sea level.  
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Fig. 1 The upper Limpopo basin in Botswana showing sub-catchment outlines and gauge locations. 

 
 
The mean annual rainfall in the catchment is about 450 mm and the mean annual runoff at the 
catchment outlet is about 70 mm. The runoff mainly occurs from November to April. Annual 
rainfall in the study area varies from year to year. Although rainfall variability in southern Africa 
has often been associated with the El Niñno Southern Oscillation (ENSO) phases which are often 
linked with droughts and seasonal rainfall variability (Reason et al., 2005), recent studies suggest 
that ENSO is poorly correlated with rainfall in some parts of southern Africa (Manatsa et al., 
2008), including the Limpopo basin (Kenabatho et al., 2009).  
 
 
Spatial-temporal rainfall representation using the GLMs 
Daily rainfall was stochastically generated using GLMs (Kenabatho et al. 2008) from the 13 
gauges listed in Table 1. In general, a GLM for a n × 1 vector of random variables Y = (Y1, …, Yn)′, 
each dependent on p predictors (whose values can be assembled into a n × p matrix X whose (i,j)th 
element is the value of  the jth predictor for Yi), consists of specifying a probability distribution for 
Y, with vector mean μ = (μ1, …, μn)′  such that:  

βXμ =)(g   (5) 

where g(·) is the link function and β is a p × 1 vector of coefficients (Chandler & Wheater, 2002). 
The GLMs in equation (5) are an extension of linear regression methods, in which variables of 
interest are considered to be drawn from specified families of probability distributions. The 
parameters of these distributions are written as linear or nonlinear functions of relevant predictors. 
The reader is referred to the works of Chandler & Wheater (2002) and Yang et al. (2005) for 
details about using GLMs for rainfall modelling, and to Kenabatho et al. (2008, 2009) for details 
of the Upper Limpopo application. Here, only a brief description relevant to this application is 
provided.  
 A GLM for daily rainfall is specified in two parts: a distribution defining the probability of 
rainfall occurrence, and another defining the amount of rainfall for non-zero occurrences. Rainfall  
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Table 1 Summary of rainfall and flow data used in this study. 
Station code Station name (and sub-catchment area) Record period Years in record % missing data 
N1 Tonota 1961–1996 36 1 
N2 Shashe Dam 1973–1994 22 6 
N3 Matsiloje 1980–1990 10 3 
N4 Francistown 1961–2004 44 0 
N5 Mathangwane 1969–2000 32 0 
N6 Jackalasi No.2 1985–2002 18 9 
N7 Sebina 1968–2004 37 1 
N8 Tshesebe 1968–1994 27 1 
N9 Ntondola 1973–2002 30 0 
N10 Masunga 1973–2002 30 0 
N11 Kalakamati 1973–2002 30 0 
N12 Tutume 1972–2002 31 0 
N13 Zwenshambe 1980–1995 16 1 
F1* Tati (539km2) 1970–1999 30 0.04 
F2* Ntshe(788 km2) 1970–1999 30 3.4 
F3* Mooke(2245 km2) 1968–1999 32 0.1 
F4* Shashe (1409 km2) 1970–1997 28 1.8 
F5* Lower Shashe (2680 km2) 1970–1997 28 1.8 
* indicates flow gauges. 
 
 
occurrence at a site is typically modelled using logistic regression. If pi denotes the probability of 
rain for the ith case in the data set conditional on a vector xi of predictors, then the occurrence 
model is given by: 
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where β is a coefficient vector. Secondly, a distribution function is fitted to the amount of rainfall 
on each wet day. A gamma distribution is typically assumed, whereby: 

γξ iiu ′=ln   (7) 

where ui is the mean of the gamma distribution on the ith wet day, ξi is a predictor vector and γ is a 
coefficient vector. In general, the values of the predictors will vary from day to day and, for multi-
site modelling, also from site to site. Spatial predictors may include elevation and/or grid co-
ordinates, while temporal predictors may include previous days’ rainfall, annual trends and 
seasonal cycles. Model fitting involves identifying an appropriate set of predictors x and ξ in 
equations (6) and (7) and then estimating the corresponding coefficient vectors β and γ. In this 
work we used the GLIMCLIM software (Chandler, 2002) to fit the occurrence and amounts 
models independently, and then to simulate rainfall using the two models jointly as follows: 
equations (6) and (7) specify probability distributions for daily rainfall at individual sites, 
conditioned on the values of various predictors. A single-site sequence can then be simulated, 
given some initial conditions, by randomly sampling a value from the first day’s distribution, using 
this value to construct a distribution for the second day, and so on to construct stochastically-
generated daily rainfall fields. For the generation of simultaneous rainfall at multiple sites, it is 
usually necessary to account for dependence between the sites. The single-site simulation 
procedure must now be modified: instead of specifying individual distributions for the next day’s 
rainfall at each site, it is necessary to specify a joint distribution for the next day’s rainfalls at all 
sites. Following Yang et al. (2005), we proceeded in two stages, first defining a joint distribution 
for the rainfall occurrence to specify the number of wet sites and their positions, and then specify a 
joint distribution for the rainfall amounts at the wet sites (Yang et al., 2005; Kenabatho et al., 
2009) to generate multi-site continuous rainfalls.  
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 As the model is stochastic, multiple realisations will produce an envelope of simulations to 
represent uncertainty. Also, the models used here are constructed in such a way that if any data 
values are missing, their conditional distribution can be determined from the values observed at 
other locations. Missing values can be simulated from these conditional distributions to yield 
complete time series with no missing values (known as imputation) (Yang et al., 2005) so that 
uncertainty envelopes for historical data can be generated. 
 In our application, the main rainfall predictors in addition to spatial and temporal predictors 
were humidity and sea-level pressure (see Kenabatho et al., 2009) obtained from the ERA-40 re-
analysis data (Uppala et al., 2005). Kenabatho et al. (2009) identified humidity and sea level 
pressure as statistically significant rainfall predictors out of a pool of 14 predictors among them air 
and dew temperatures, sea-surface temperatures and the ENSO indices. The models were used to 
stochastically infill the rainfall records at the 13 raingauge sites for the period 1974–1999, which is 
the most complete period of the observed record to generate 10 sets of infilled rainfall data which 
represent uncertainty due to the missing data. Following this, the fitted GLMs were then used to 
generate 100 years of continuous daily rainfall with 10 imputations (infilled values) at the 13 
raingauges. These 100 years of rainfall were generated conditioned on the external predictors 
assuming a stationary climate by assuming that the observed humidity and pressure from the ERA-
40 data from 1961–2000 will repeat in the future. Climate change analysis will be performed in 
future work. Rainfall fields were then estimated from the 13 gauges using Thiessen polygons, 
providing rainfall data series suitable for input to the calibration of the rainfall–runoff model. In 
principle, the GLM could be used to infill spatially as well as temporally; however, the evaluation 
of Kenabatho et al. (2009) focused on temporal infilling, so here we prefer to use Thiessen 
polygons to generate the spatial field. Furthermore, the identified GLM and Thiessen polygons 
were used to synthesise 100 years of continuous daily rainfall as input to the rainfall–runoff 
simulation.  
 
 
RAINFALL–RUNOFF MODELLING STRATEGY 

Calibration strategy 
The IHACRES model was run with a daily time-step in semi-distributed mode using five sub-
catchments (Fig. 1). The model was calibrated for each of the four sub-catchments with flow data. 
The upper catchments were calibrated individually and their optimised parameters were fixed prior 
to calibrating the other two catchments which were calibrated together assuming uniform para-
meter values. Uniform random sampling was used as the search method, with 10 000 samples. 
Initially, the model defined in equation (4) was used together with two linear stores in parallel. The 
reference air temperature T’ in equation (3) was fixed at the average temperature of 26°C leading 
to nine parameters to estimate (α, β′, γ, λ, ρ, f, kq, ks, c). Fixing the reference temperature enables 
the catchment water loss to be controlled primarily by a temperature modulation parameter γ on 
the basis of changes in temperature to compensate for evapotranspiration losses (Jakeman et al., 
1990; Post & Jakeman, 1999; McIntyre & Al-Qurashi, 2009). After sensitivity analysis, following 
the approach used by McIntyre & Al-Qurashi (2009), the final model was reduced to a six-
parameter model (without ks, and by fixing c and f to 1). The calibration procedure was repeated 
10 times—using each of the 10 rainfall realisations—to identify 10 models considered to be 
equally optimal. The purpose of doing this was to assess model uncertainty resulting from rainfall 
data. Various objective functions were tested, and, given the main ultimate task is to analyse 
reservoir behaviour in drought periods, a low flow performance measure was selected: 
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where N is the number of data points below a threshold of observed flow L, oi and  ci are observed 
and simulated flows at time steps i for which ci < L. Calibration was performed at a daily time 
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step, but the RMSEL was assessed at a monthly scale. This monthly time scale was thought to be 
appropriate given the large capacity of the reservoir, whereas daily data are better for generating 
the flows due to the nonlinearity of the response. Initial results showed that significant parameter 
variations occurred over three periods: 1974–1981, 1981–1991 and 1991–1999 (using hydro-
logical years, October–September). This is a significant problem which is discussed later—for 
now we use the period 1981–1991 for the calibration. Using the calibration results for that period, 
the best parameter set obtained using each rainfall realisation, together with the 100 years of 
simulated rainfall data, was then used to generate 100 years of flow at the catchment outlet (i.e. the 
proposed reservoir inlet). 
 
 
RESULTS AND DISCUSSION 

Calibration and validation results 
Figure 2 (the top left plot) is the calibration result showing the observed flow plotted with the 
simulated flow for the catchment outlet, indicating performance which is considered reasonable. 
The top right plot of Fig. 2 shows flow cumulated over the calibration period for the catchment 
outlet. In general, the model results are in agreement with the observed flow volumes, except 
during the 1987/88 hydrological year where the observed volumes are not well captured by the 
model in all the sub-catchments. From the plots, it is clear that uncertainty resulting from the 10 
rainfall imputations is high. This implies that it is important to consider the uncertainty associated 
with temporal infilling of missing rainfall data in the calibration procedure. The uncertainty also 
illustrates that the stochastic component of the rainfall variability is important, and long sequences 
of rainfall may be needed in order to represent a range of feasible drought conditions for the 
reservoir analysis (hence we use 100 years). 
 Another source of uncertainty is parameter equifinality, whereby, irrespective of rainfall 
uncertainty, many parameters sets may give equally optimal objective function values. We 
assessed this by using the top 50 parameter sets (on the judgement that these are equifinal) for one 
rainfall realisation and we found that this gave similar degree of variability in the simulated 
hydrograph as shown in Fig. 2. Ideally, therefore, for each rainfall realisation, a number of equi-
final parameter sets would be considered. We limit this analysis, however, to using the single best 
parameter set for each of the ten realisations. The validation results shown at the bottom plot of 
Fig. 2 (for the period 1991–1998) show that the model prediction has deteriorated somewhat. This 
is not surprising given the apparent differences in hydrological properties (in terms of the runoff 
coefficients) between the three sets of time series as noted earlier. These differences could be a 
result of changes within the catchment, i.e. those related to land-use and land cover changes. In the 
refinement of this work, such possibilities will need to be investigated and possible future changes 
considered as scenarios.  
 
Reservoir performance results 
The 10 calibrated models were used to simulate flows at the catchment outlet using the 100 years 
of rainfall generated by the GLM. The generated flows were subsequently used to assess perfor-
mance of the proposed reservoir. The reservoir will have an active storage of 382 × 106 m3 (Snowy 
Mountains Engineering Corporation & Engineering Hydrological Environmental Management 
Consultants, 2006). The volume balance is based on (McMahon & Adeloye, 2005):  

LEVDQZZ ttttt −−−+=+1  (9) 

where Zt+1 and Zt are the contents of the storage at times t + 1 and t; Qt is the inflow to the storage; 
Lt is the release in volume units; EVt is the net evaporation loss; and Dt is the abstraction for input 
to the water supply system. 
 Infiltration losses are neglected here. Evaporation losses (EVt) are estimated using the 
reservoir surface area–storage relationships, as well as estimates of monthly open water evapora-
tion (e) for the catchment (Snowy Mountains Engineering Corporation & Engineering Hydrological  
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Fig. 2 Calibration (top plots) and validation (bottom plots) results for the flow gauge at the catchment 
outlet. The plots on the right show cumulated volumes. In all the plots lb and ub refer to lower and 
upper boundaries of the simulated flows. 

 
 
Environmental Management Consultants, 2006) implemented through (McMahon & Adeloye, 
2005):  

)(5.0)(5.0 1 tttttt aeZaeZbeEV +++=  (10) 

where a and b are the coefficients of the storage–area relationships. The contents of the reservoir 
were not allowed to exceed the active storage (i.e. the excess is spilled) and D, L are reduced as 
necessary to avoid the condition Z < 0. Additionally, a simple control rule is imposed whereby 
only 20% of the demand will be abstracted whenever the storage drops below 25% of capacity. 
The unrestricted demand is estimated to be 65 × 106 m3 per year (this is the 2005 estimate—
although this is expected to reach 160 × 106 m3 by 2035, the reservoir in question is designed to 
meet the 2005 demands) (Snowy Mountains Engineering Corporation & Engineering Hydrological 
Environmental Management Consultants, 2006). The environmental flow release is 5% of the 
inflow. The reservoir is assumed full at the beginning of the assessment, and equations (9) and 
(10) are implemented at a monthly time scale.  
 The 10 simulations of storage are presented in Fig. 3, and it is evident that the storage displays 
high variability resulting from the simulations used. Also, it appears that most simulations are in 
agreement regarding the dry spells, particularly between the 300th and 500th months, and towards 
the end of the simulation period (800th and 100th months), where two of the simulated flows 
resulted in an empty reservoir. Table 2 gives summary statistics of the reservoir performance for  
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Fig. 3 Reservoir performance for a proposed reservoir in the Limpopo basin: ten sets of simulated 
storages. 

 
 
the 10 simulations. The highest failure incident for the 100 years of assessment was 158 months, 
i.e. the number of times when the reservoir failed to meet the demand. This includes the period 
during which the reservoir was empty for seven consecutive months (between the 909 and 915 
months in Fig. 3). Surprisingly, the other simulations did not record any persistent failure of this 
magnitude, as shown in Table 2. The time-based reliability of this reservoir (percentage of time for 
which demand was met) ranges between 87 to 100%. Clearly, this expression of uncertainty adds 
to the information of risk of failure and would not have been achieved without the use of 
stochastic rainfall modelling and subsequent ensemble flow simulations. Other interesting features 
to note in Table 2 and Fig. 3 are the variability in terms of the reservoir storage states and the 
months at which supply restrictions were imposed, which in practical terms will help decision 
makers to make informed decisions on demand management considering these wide ranges of 
uncertainty.   
 
 

Table 2 Statistics of reservoir performance computed from 10 simulations. 
 sim1 sim2 sim3 sim4 sim5 sim6 sim7 sim8 sim9 sim10 
Months of restricted supply 26 0 33 0 146 120 32 0 8 0 
Total months of failures, F (b) 29 0 39 0 158 125 35 0 10 0 
Consecutive failures (a) 0 0 0 0 7 0 0 0 0 0 
Lowest recorded storage (106 m3) 39 178 31 111 0 1 22 170 77 224 
Total months of spills 105 113 28 159 36 46 36 210 83 239 
Reliability, R (%) (b) 98 100 97 100 87 90 97 100 99 100 

(a) Maximum number of consecutive months in which the reservoir was empty. 
(b)  R = 1 – F/M, where M is the total number of simulated months (= 1200); F is the number of months 
during which the demand was not met, including when the reservoir was empty.  
 
 
CONCLUDING REMARKS 

The main objective of this work was to test the performance of a continuous time conceptual semi-
distributed rainfall–runoff model when driven by stochastically generated spatial–temporal 
rainfall, and implications for reservoir operations within Botswana’s national water resource 
strategy. It was observed that while the IHACRES model performed well in the chosen calibration 
period, it performed poorly during the validation period. This is presumed to be a result of land-
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use/land cover changes. By using multiple realisations of rainfall generated from the GLMs, it has 
been possible to appreciate the level of uncertainty associated with the rainfall. From this observa-
tion, and the assumption that the short rainfall record used may not be sufficient to represent a 
wide range of feasible drought conditions, we generated 100 years of rainfall input to drive the 
hydrological model. Furthermore, the uncertainty in the historic rainfall was propagated through 
the calibration of the hydrological model to provide 10 equally likely parameter sets. Hence 10 
realisations of 100 years of reservoir input flows were generated. The results were used to assess 
performance of a proposed reservoir in the Upper Limpopo in Botswana, assuming some reservoir 
operation rules for demand management. The results show a wide range of variability in the 
simulated reservoir storages. This uncertainty has potential implications on the performance and 
the reliability of the reservoir. For example, the estimated reliability of the reservoir (frequency of 
failure to meet demand) varied from 0 to 13% over the 10 simulations. However, there is not 
enough evidence in our analysis to question the adequacy of the proposed reservoir; rather we have 
demonstrated a framework which needs to be extended and refined. It is suggested that future 
work should include other sources of uncertainty including: (1) stochastic spatial infilling of 
rainfall as well as temporal infilling; (2) rainfall–runoff model parameter equifinality; (3) future 
land-use and land cover change; (4) sensitivity to rainfall–runoff model calibration strategies; and 
(5) incorporating scenarios of climate change.   
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