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Abstract A new phenomenological hierarchical stochastic model is developed to robustly simulate rainfall 
fields consistent with 10-minute 1-km2 pixel radar images. The hierarchical framework has three levels. The 
first level simulates a latent Gaussian random field conditioned on the previous time step. In the second 
level, first-order autoregressive (AR(1)) models are used to describe the within-storm variations of the level-
one parameters that control the evolution of rain fields. The third level is designed for simulation of storm 
sequences. Calibration and validation of the first two levels using an observed storm event (typical in 
Sydney, Australia) demonstrate that this two-level model produces realistic sequences of rain images which 
capture the physical hierarchical structure of clusters, patchiness of rain fields and the persistence exhibited 
during storm development. A variety of important statistics are adequately reproduced at both 10-minute and 
1-hour time scales over various space scales. Application of this model to short-term rainfall forecasting is 
also presented. 
Key words stochastic space-time rainfall; hierarchical framework; high-resolution;  
block Toeplitz, circulant decomposition; generalized moments; parametric bootstrap; short-term forecasting 
 
 
INTRODUCTION  

The spatial and temporal variation of rainfall over small scales substantially affects the estimation 
of runoff, particularly for urban catchments where the time of concentration is typically small. A 
rainfall model that can adequately reproduce the spatio-temporal variation of important rainfield 
characteristics is highly desirable. In recent years, high-resolution stochastic space-time rainfall 
modelling has received increased attention from hydrologists. Various stochastic modelling 
approaches have been developed to characterize the rainfall variation in both time and space, 
including cluster-based models (e.g. Waymire et al., 1984; Mellor et al., 2000; Cowpertwait et al., 
2002), multi-fractal models (e.g. Seed et al., 1999), and other random field models (e.g. Pegram et 
al., 2001). Most of these models, however, make simplifying assumptions on the temporal 
characteristics of rainfall fields and thus cannot be expected to reproduce important statistics, 
especially at small time and space scales. In particular, cluster-based models usually attempt to 
describe the physical structure of rainfield and thus lead to a large number of model parameters. 
Some common deficiencies associated with this class of model include an inability to generate 
sub-hourly rainfall due to simplified cluster mechanisms, and an inability to reproduce statistics at 
time scales not used for calibration (e.g. Cowpertwait et al., 2002). The space-time rainfall 
forecasting model developed by Mellor et al. (2000), for example, despite being conditioned upon 
the latest observed radar images and allowing the spatial covariance structure to change over time, 
has difficulty in dealing with storms with a less well-defined structure such as convective events. 
Compared to cluster-based models, the main attraction of multifractal models is that their self 
similarity property enables parsimonious parameterization of rainfall fields over a wide range of 
scales. However, they are not without disadvantages, such as the issue of imperfect scaling of 
space–time rainfall, making some subjective assumptions on space–time cascade generators (e.g. 
Over & Gupta, 1996; Krajewski, 1996). So far these models have not been used for long-term 
simulation and applications have only been restricted to single storm events. These current state-
of-the-art scale invariant models are still at the stage of theoretical development and there is still a 
long way to go in their practical application (Mellor et al., 2000). Apart from the above two 
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primary approaches, other theories of random field, e.g. Gaussian Markov Random Field (GMRF), 
Spatial-Temporal Auto-Regressive Moving-Average (STARMA) and other Gaussian random 
fields, have also been applied in spatio-temporal rainfall modelling. Among them, models of 
GMRF and STARMA share the Markovian property in spatial correlation which typically 
produces inaccurate marginal variances. Other Gaussian random field models have their own 
limitations as well. For instance, the “String of Beads” model (Pegram & Clothier, 2001) requires 
rain intensity fields to be lognormally distributed. 
 To overcome these limitations, an improved rainfall model should therefore be: 
1. capable of generating images conditioned on previous time steps; 
2. able to adequately reproduce the temporal variation of important rainfield characteristics by 

allowing model parameters to evolve over time; 
3. capable of dealing with different types of storms, e.g. frontal and convective systems; 
4. flexible with regard to the distribution of rainfall intensity; and 
5. capable of modelling storm sequences for long-term simulations, not only for the simulation of 

single storm events. 
In this paper, we develop a new model framework that satisfies (1)–(4), with (5) being reserved for 
future work. 
 
 
A THREE-LEVEL HIERARCHICAL FRAMEWORK FOR RAINFALL FIELDS 

Statistical characteristics of rainstorms derived from radar rainfall images (Qin et al., 2006) 
suggest that the modelling of space–time rainfall is challenging because the parameters controlling 
the stochastic evolution of the images are themselves evolving during the storm according to a 
stochastic process. Moreover, there are different storm types implying the parameters of the 
stochastic process vary between storms. This hierarchical structure is expected to be critical in the 
development of a high-resolution model. In this section, a new hierarchical framework is proposed 
for simulating high-resolution rainfall fields. The core idea is to simulate temporally varying 
Gaussian random fields that are conditioned on the rainfall field at the previous time step. To do 
so, the rainfall data must first be transformed to remove skewness and to accommodate the 
patchiness of rainfields using a latent Gaussian variable approach (for details, see Qin et al., 2006). 

Description of the Three-Level Hierarchical Model 
Figure 1 presents the three-level hierarchical structure of the model. In Level 1, the transformed 
rain fields  conditioned on the previous time step are simulated, and are then transformed 
back into real rainfall fields  through the transformation coefficient 

1+ty ty

1+tr γ  using equation (1). The 
parameters of the multivariate normal model, tt |1+μ  and tt |1+Σ , can be derived using equation (2) 
through some intermediate variables that are directly linked to Level 2. The mean and standard 
deviation of and  (ty 1+ty

11
,,,

++ tttt yyyy σμσμ ) can be obtained using equation (3) by sampling 

Rμγ , and from the level-two AR(1) models. The spatial correlations of and  
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WAR ty 1+ty
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model. The temporal correlation between and  (ty 1+ty tρ ) and the advection velocity ( θυ , ), 
respectively, are sampled from their AR(1) models. The parameters of these AR(1) models in 
Level 2 are classified into different sets and fitted using Level-3a probability models conditioned 
on the storm gross characteristics ( , , ) generated by a Level-3b probability model.  d dt st
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where r  represents the observed rainfall data, denotes the transformed latent Gaussian variable, 
and 

y
γ  is the transformation coefficient. 
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Fig. 1 Structure of the three-level hierarchical model. 
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In equation (2), tμ  is the mean areal intensity for image t , tt ,∑ denotes marginal spatial 
covariance of image t. 
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where  represents the normal score corresponding to y = 0 and has an exceedence probability 
equal to the wet area ratio (WAR ), and 

0=yz

yμ  and yσ , respectively, are the mean and standard 
deviation of y: 
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where the power exponential class of spatial correlation functions are described by two 
parameters, a correlation length scale (α ) and a shape parameter ( β ). 
 The first two of the three levels are discussed in detail in the following two subsections. The 
level 3 models are left for future work. 
 
Level 1: Conditional rainfield model:  tt yy |1+

Due to the computational limitations of the Cholesky decomposition method, the conditional 
space–time rainfall model is built in a Lagrangian system with the advective velocity vector used 
to convert Lagrangian coordinates to Eulerian ones. Due to the exclusion of velocity, the space–
time covariance in the model now becomes separable, and can be written as the product of a purely 
spatial covariance matrix and a purely temporal covariance matrix. Noting that  is block 
Toeplitz and can be embedded in a circulant matrix, the circulant embedding and the Fourier 
transform technique can then be employed to efficiently generate random fields (Dietrich & Newsman, 

)( 1+tyCov
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1997). Details of the formulation of the conditional rainfield model, , can be found in Qin 
et al. (2008). Due to space limitations, only the final result of the derivation is given below. 

tt yy |1+

The conditional random variable  given  can be expressed as: 1+ty ty

tttttt Fy |111|1 ++++ = εΔ  (5) 

where yt is some )1( ×n  vector of correlated Gaussian random variables at time t, tε are 
uncorrelated  Gaussian variables , )1( ×n ),0(~ IN tε  and 1+tε  are correlated in time according to 
some correlation tρ ( the same for all pixels), F is a Fourier matrix, Δ is a diagonal matrix of 
eigenvalues of a circulant matrix of  , and  )( 1+tyCov

1
2

|1  1 ++ −+= tttttt ερερε            (6) 

This is a new result. Equation (5) can be solved using fast Fourier transforms which results in 
remarkably efficient generation of conditional normal variables. It takes approximately one second 
to generate a rainfall image with a 256 × 256 lattice grid on a computer with a 2.0GHz CPU. 
 
Level 2: AR(1) Models for the Level 1 model parameters: ),,,,,,,( tR WAR ρβαθνγμ  

Investigation of the rainfall power-law transformation shows that yy σμ , and γ are highly 

correlated with each other, while Rμ and WAR have low correlation with γ . Therefore, Rμ  and 
WAR are the better choice for model parameters in terms of sampling. Given Rμ , WAR and γ , 

yμ and yσ can be obtained using equation (3). The time series analysis in Qin et al. (2006) suggests 

that Rμ  and WAR  are positively correlated, and that α  and β are negatively correlated, and that 
two bivariate AR(1) models are appropriate for simulating these variables. Univariate AR(1) 
models can be used to simulate the remaining level-one parameters γθ ,,v and tρ . 

 
DATA  
The Kurnell radar images, provided by Australian Bureau of Meteorology (Seed, pers. comm., 
2005), have 1-km spatial and 10-minute temporal resolution covering a 256 km × 256 km area 
centred about 20 km south of Sydney. These reflectivity data were converted to rainfall intensity 
by using the following climatological relationship for Sydney, reflectivity = 280rain1.6, which has 
been calibrated on raingauge data. The following criterion separates the images into different 
storms: prior to the start of a new storm, the wet area ratio (WAR) must be less than 5% for more 
than two hours. Though intuitive, this criterion is arbitrary but nonetheless convenient. 
 The event (storm 37) observed on 18 December 2000, commencing at 02:55h and ending at 
12:35h UTC, is used to demonstrate the calibration and validation of the high resolution space-
time rainfall model. In this paper, meanR (μr) and stdR (σr) denote the mean and standard 
deviation over all pixels (both wet and dry) within an image; the overall meanR and stdR present 
the mean and standard deviation over all pixels through both space and time within a storm; while 
wet or conditional meanR and stdR represent the mean and standard deviation over all wet pixels 
through space and time. 
 
 
CALIBRATION AND VALIDATION OF THE FIRST TWO LEVELS OF THE 
HIERARCHICAL MODEL 
The method of moments and the maximum likelihood are two common approaches for model 
parameter calibration. Due to bias in maximum likelihood estimates of the latent variables, the 
method of moments is used for calibration. Qin et al. (2008) compared two different model 
calibration strategies, namely the method of moments and the method of generalized moments. 
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The results suggest that the method of generalized moments produces more realistic images and is 
able to reproduce aggregated statistics over a wide range of space and time scales. Details on 
calibration and validation of the first level of the model can be found in Qin et al. (2008).  

Calibration of the first two levels 

For level one, eight model parameters are calibrated. Among them, yμ , yσ  and γ  are highly 
correlated and are jointly estimated from the data; α  is calibrated using generalized moments by 
fixing 5.1=β ( Qin et al., 2008); υ  and θ  are estimated by maximizing the cross correlation 
between two consecutive images (Qin et al., 2006) and the lag 1 temporal correlation of the 
observed rainfall data r  is then the maximal cross correlation between two images. Once the lag 1 
temporal correlation of the observed rainfall data is obtained, the approach of Bell (1987) can be 
applied to work out tρ  in “y” space. For details please refer to Qin et al., 2008. For level two, it 
was found that a bivariate AR(1) model is capable of simulating the time series of Rμlog  and 
logWAR for most storms, and that a univariate AR(1) model is appropriate for simulating the time 
series of γ , α , υ , θ  and tρ , respectively.  

Validation of the first two levels as a whole 
The parametric bootstrap validation technique is used to verify the space–time model for the 
selected storm by comparing the observed and simulated statistics of interest. The test will focus 
on the following characteristics: (1) visual comparison of historical and simulated radar images; 
(2) basic summary statistics, including the unconditional (all pixels involved) and conditional 
(only wet pixels involved) overall meanR, stdR and WAR over a wide range of spatial and 
temporal scales (Wheater et al., 2000). The unconditional statistics provide an overall picture of 
the entire field, while the conditional statistics allows focusing on the rain events themselves. The 
space scales considered for model verification are 1 km, 2 km, 4 km, 8 km, 16 km and 32 km. The 
temporal scales are 10-minutes and hourly. 
      For a given storm, using the initial values of the time series of the estimated level-one 
parameters to initialize the corresponding level-two AR(1) models, 100 replicates are generated as 
follows: Firstly, the eight level-one parameters ( yμ , yσ , γ , υ , θ , α , β and tρ ) are sampled 
from the fitted level-two AR(1) models; secondly, transformed rain images in “y” space are 
generated one by one using the eight sampled parameters and then transformed back into real 
rainfall fields in “r” space using the power-law transformation. Then the sampling distributions of 
important statistics over a wide range of space–time scales are calculated and compared with the 
observed storm statistics. For each simulation, the initial image was marginally sampled and the 
subsequent images were generated sequentially by conditioning on the previous image. 
      Figure 2 presents a visual comparison of the historical and simulated radar images for storm 37 
at the 10-minute scale. Although each replicate of the sequence of three consecutive images may 
look quite different from the observed one, the persistence of the clusters seems to be well 
preserved. More importantly, as demonstrated in Fig. 3, 100 simulations of storm 37 show that the 
seven important statistics averaged throughout the storm have been well reproduced for both  
10-minute and 1-hour aggregation over spatial scales ranging from 1 km to 32 km. The 
reproduction of the unconditional class of statistics, such as the overall unconditional mean, 
overall unconditional standard deviation, the unconditional within-image standard deviation 
averaged over all images of the storm, and the wet area ratio, ensures that the statistics over the 
entire field domain (including both wet and dry pixels) at various space scales are maintained. The 
preservation of the conditional category of statistics, on the other hand, ensures the main features 
of the rain event itself (wet pixels only) are reproduced. This is a very encouraging result as it is 
well known how difficult it is for a stochastic rainfall model to reproduce statistics over various 
aggregated space and time scales, and particularly over those not used for model calibration (e.g. 
Seed et al. 1999; Pegram & Clothier, 2001; Cowpertwait et al. 2002). 
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(a-1)  (a-2)  (a-3)  

   
(b-1)  (b-2)  (b-3)  

   
(c-1)  (c-2)  (c-3)  

   
(d-1)  (d-2)  (d-3)  

Fig. 2 Comparison of observed and simulated rainfall fields (with 1-km spatial resolution) for three 
consecutive images in storm 37 with images aggregated at 10-minute time scale: (a) observed sequence 
of three consecutive images; (b) (c) (d) three replicates of three consecutive images.  
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Fig. 3 Boxplots of important statistics over various space-time scales for 100 replicates of storm 37 
generated by using level-two AR(1) models to generate the eight Level 1 model parameters that control 
the evolution of rain images. Red stars denote the observed values. See next page for parts (b)–(e). 
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Fig. 3 Continued from previous page. Boxplots of important statistics over various space-time scales 
for 100 replicates of storm 37 generated by using level-two AR(1) models to generate the eight Level 1 
model parameters that control the evolution of rain images. Stars denote the observed values.  
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SHORT-TERM FORECASTING 

Feasibility of short-term forecasting 

The conditional simulation capability of the two-level rainfall model makes it potentially useful 
for short-term forecasting. It was shown that the transformed rainfall field can be generated 
conditioned on the latest simulated image  according to equation (5). Generating conditional 
normal variables is extremely efficient because it involves independently sampling  and  
from white noise and then twice applying discrete 2-D fast Fourier transforms to obtain  and 

simu
t 1+y

simu
ty

tε 1+tε

1+tF

1+tΔ . In forecasting applications, the only difference is that the conditional simulation is based 

on the latest observed image  (note that  cannot be observed directly, here obs denotes  
derived from an observed image). Once  is obtained, the corresponding uncorrelated variables 

 for the observed image ( ) can be readily obtained by equation (8), which is the inverse of 
equation (7) used for marginal simulations. Then the forecast of  conditioned on the latest 
observed image can be generated by conditional simulation using equations (9) and (10).  

obs
ty ty ty

obs
ty

tε
obs
tε

1+ty

marginal simulation:                                                                     (7) tttt εΔFy 2/1=

( )obs
ttt

obs
t yFΔε 12/1               −−=⇒                                                     (8) 

1
2

|1 1             ++ −+=⇒ tt
obs
tt

pred
tt εεε ρρ                                             (9) 

pred
tttt

pred
tt |111|1               ++++ =⇒ εΔFy                                                 (10) 

The principle challenge for rainfall forecasting using equations (8) to (10) is estimation of yt from 
the observed radar image rt. According to the power-law transformation given by equation (1), it is 
straightforward to estimate yt for wet pixels where r > 0. However, yt is unknown for dry pixels. So 
the challenge is how to estimate yt  at dry pixels given known yt at wet pixels. This question can be 
solved by applying the theory of Gaussian Markov Random Field (GMRF). According to GMRF 
theory, the density for one variable conditioned on the rest does not depend on all the other 
variables but only those in the Markov neighbourhood. This is often referred to the Markov 
property of a GMRF. Based on its small neighbourhood, yt at each dry pixel can be estimated 
using single-site Gibbs sampling iteratively until the field converges.  
 GMRF theory and single-pixel Gibbs sampling method are employed to estimate yt at each 
dry pixel in an observed rain image. Basically the procedure involves two steps: Firstly, fitting a 
GMRF to the transformed Gaussian rain field in terms of preserving the historic spatial 
correlations over a long range of scales. Secondly, based on the local dependence of the GMRF, 
applying the single-site Gibbs sampling approach to estimate yt for each dry pixel conditioned on 
its small neighbourhood. 
 
Validation of single-pixel Gibbs sampling yt for dry pixels 

In this section, a small example is given to verify the methodology for estimating yt at dry pixels, 
which is the only challenge involved in short-term forecasting. The validation involves the 
following procedure: (1) generating a synthetic rain field (4 × 4) as true values of yt; (2) using the 
single-pixel Gibbs sampling approach to estimate yt for dry pixels; (3) comparing the simulated yt 
with those true values of yt. 
 As shown in Fig. 4, a 4 × 4 synthetic rain image is generated at time t by setting μy = 1.5, σy = 
1.0, spatial correlation parameters α = 1.0 and β = 1.0. Figure 5 presents histogram plots of the 
estimate yt compared with the true values. It can be seen for each dry pixel that the histogram of 
100 simulations of yt shows a smooth truncated bell shape. Importantly, all the true values are 
consistent with the histograms for the dry pixels. 
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-1.20 -0.25 -0.02 -0.47 
-1.63 0.80 -0.00 -1.19 
-0.14 0.22 -0.15 -2.06 

  Fig. 4 A 4 × 4 synthetic rain field with true values of yt: wet pixels are italic, while dry pixels are black. 
 

 
Fig. 5 Histogram plots of estimated  compared with the true values (denoted by stars).  ty

An example of short-term forecasting 
Once yt has been estimated, it is straightforward to make short-term forecasts using the proposed 
conditional rainfall model. In this section an example of short-term forecasting for a 16 × 16 lattice 
is presented to demonstrate how uncertainties increase with lead-time using the stochastic model. 
Firstly, a 16 × 16 Gaussian rain field is generated as the initial image y0. Given lead-time t, , 

,…,  are in turn simulated as a “true” observed sequence of rain fields. Secondly, 
01 | yy

02 | yy 1| −tt yy
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0ŷ  for dry pixels of image y0 is estimated by iterative single-site Gibbs sampling. Ten chains are 
used and after every 100 iterations along each chain (defined as one “loop”, i.e. one loop = 100 
iterations × 10 chains) convergence is checked. The last loop with 1000 realizations can be viewed 
as samples from the distribution of , labelled as , 0ŷ )(ˆ0 iy 1000,,2,1 K=i . Thirdly, having 
obtained  for dry pixels in the initial image , conditional simulation can then be used for 
short-term forecasting. Given lead-time t, 1000 ensembles of forecasts are generated as follows: 

0ŷ 0y

( ) ( )1 0ˆ ˆ|y i y i , ( ) ( )2 1ˆ ˆ|y i y i ,…, ( ) ( )1ˆ ˆ|t ty i y i− , 1000,,2,1 K=i .  
 The 90% forecasting uncertainty interval is defined as the range over which 90% of the 
simulated probability mass is found. The average of the 90% uncertainty interval over all pixels in 
an image is referred to as “average 90% uncertainty interval”. Figure 6 depicts the increase of the 
average 90% uncertainty with lead time increasing. As can be seen, for a 10-minute lead-time, the 
uncertainty is relatively small, but increases as lead-time increases. The curve levels off after 
approximately 100 minutes, at which point the stochastic model is reporting the marginal variance 
independent of the observed image y0 (in other words, the stochastic model no longer has any 
memory of the observed image). However, for lead-times of less than 1 hour, particularly 30–
40 minutes, the stochastic model has useful skill. This is important for flash flood forecasting in 
urban catchments. For lead times beyond 1 hour, reliance would need to be placed on numerical 
weather prediction models which incorporate physical processes. 
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Fig. 6 Plot of forecast uncertainty against lead-time. 

 
 
CONCLUSION 
A new high-resolution space–time model for simulation of rainfall fields consistent with 10-
minute 1-km2 pixel radar images has been developed based on generating latent Gaussian random 
fields conditioned upon the latest image. A power transformation is applied to the rainfall field to 
ensure the transformed field is Gaussian. This model adopts a separable space–time correlation 
function so that the spatial correlation, modelled by a powered exponential covariance function, 
has the block Toeplitz structure. This allows the circulant embedding technique to be used for fast 
and accurate simulation. The simulation process is non-stationary over time, allowing for the 
parameters, which control the stochastic evolution of rainfields, to change dynamically from image 
to image within a storm. The simulated field is advected by velocity parameters that evolve 
through the storm’s lifetime. Because this is a phenomenological model without explicit 
incorporation of storm physical structures, it is capable of dealing with different storm types. 
 The performance of the first two levels of the model was evaluated by comparing the 
characteristics of interest between a typical observed storm event and synthetic storms. Visual 
comparison suggested that the two-level rainfall model is capable of producing realistic sequences 
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of rain images that capture three major features of rainfield, i.e. the physical hierarchical structure 
of clusters, patchiness of rain fields, and the persistence exhibited during storm development. A 
number of important statistics, namely the unconditional overall mean, unconditional overall 
standard deviation, overall wet area ratio, conditional overall mean, and conditional overall 
standard deviation, were adequately reproduced at both the 10-minute and the 1-hour time scales 
over space scales ranging from 1 km up to 32 km. Many of these statistics were not subjected to 
calibration. This is a significant achievement and an advance in capability over current models. 
 The conditional structure of the rainfall model makes it feasible to perform short-term 
forecasting at high space-time resolutions. The main challenge is to estimate yt for dry pixels in an 
observed image. GMRF theory in conjunction with the iterative single-site Gibbs sampling 
technique was used to estimate yt at dry pixels and validated for a 4 × 4 rain field. A short-term 
forecasting case study was then undertaken on a 16 × 16 rain field. Not surprisingly, the 
uncertainties of forecasts increase with lead time. For lead-times of less than 1 hour, the stochastic 
model shows fair forecasting skill. That may be important for flash flooding forecasting in urban 
catchments.  
 To date the first two levels of the hierarchical model have been developed and tested with 
encouraging results. There is scope for improvement of the level-two model and extension of the 
short-term forecasting to large rainfields. However, the main challenge lies with the level-three 
component of the model. 
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