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Abstract This paper deals with development of parsimonious models for dryland areas. The modelling 
approach is to capture the dominant processes of dryland areas in a data-limited environment. Two 
processes, evaporation and subsurface flows, are identified as dominant and are modelled at monthly time 
steps for a study area in western India. The area is represented by interconnected linear (in storage–discharge 
relationship) reservoirs, and each reservoir is parameterized to represent the two fluxes. The parameters are 
estimated based on GRACE (terrestrial storage change) and MERRA2D (evaporation flux) data 
simultaneously. Finally, parsimony in parameters of the overall model (of interconnected linear reservoirs) is 
achieved by regionalizing recession parameters in terms of soil characteristics. This study elicits an approach 
that is urgently needed in data and water scarce regions. 
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INTRODUCTION 

Development, data scarcity and need for parsimonious modelling  

Water management is intricately linked to food security and to livelihoods of the agrarian poor in 
dryland areas of many developing countries. Most dryland agricultural production also tends to be 
rainfed (Bantilan et al., 2006). Many governments have opted for reforms in water management 
with inclusive and sustainable economic growth in mind, and especially in watershed management 
with an emphasis on decentralized basin level water resource management (Dinar et al., 2007). 
However, the success of such water policy reforms critically depends on reliable hydrological 
models. The robustness of such models is paramount, which becomes an exceptional challenge 
when faced with scarce relevant data for model selection. This is one wicked water management- 
related model selection problem. 
 Reliable hydrological models approximate the underlying set of processes as best as “data-
possible”. Models are conceptualizations (Savenije, 2009) and need to be evaluated with 
observations before selecting the best available conceptualization. A model that conceptualizes the 
processes better (low “approximation” error) is possibly more complex (Cucker & Smale, 2001). 
However, models selected from a set of complex models (in terms of number of parameters) are 
generally uncertain in prediction (high “estimation” error). Thus, there is an estimation/ 
approximation error trade-off in model selection. 
 This estimation/approximation error trade-off calls for a balance between complexity and 
process representation. A balance can be struck, when dominant processes are conceptualized via 
models that have a minimal set of parameters. One solution is to model dominant processes (at the 
scale of application) (Savenije, 2009) with concepts that have minimal sets of parameters, thus 
breaking the trade-off between “approximation” and “estimation” error.  
 We propose a parsimonious modelling approach as a solution to the wicked problem of model 
selection for water management in data scarce dryland areas. We conceptualize two dominant 
processes: evaporation and subsurface flows. Its parameterization is based on soil properties of the 
study area (Refsgaard & Storm, 1996; Vogel, 2006) and is robust. Additional simplicity is infused 
by modelling at monthly time steps, which is generally the scale for water policy.     
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STUDY AREA AND DATA 
Study area 
The study area comprises the arid/semi-arid states of Gujarat and Rajasthan in India, with an area 
of 538 346 km2, minimum (maximum) average monthly precipitation and temperature of approx.  
2 mm/month (202 mm/month) and 17°C (33°C), respectively. The relief is relatively flat except 
for the Aravali Hills extending from the northeast to southwest. The soil is sandy (northwest) to 
loamy-clay (southeast). The two states have impressive GDP growth (Planning Commission GOI, 
2010) and are well-positioned for innovations in water management techniques. 
 
Data 
The Global 30 arc-second Elevation Data Set (GTOPO30) is used for the study area (available 
from the US Geological Survey). Gravity Recovery and Climate Experiment (GRACE) data from 
August 2002–August 2008 (yearly mean monthly) over land at 1° resolution is used for monthly 
changes in water storage (Chambers, 2006). The Modern Era Retrospective-analysis for Research 
and Applications (MERRA), a NASA reanalysis using the Goddard Earth Observing System Data 
Assimilation System Version 5 (GEOS-5), is used to obtain monthly averages of surface 
evaporation fluxes for the year 2000 (Bosilovich, 2008). The data set used is at ½ × ⅔ degree (lat. 
× long.) resolution. The CRU TS2.1 data set (Mitchell & Jones, 2005) is used for yearly mean 
monthly total rainfall estimates, and mean temperature grid data from 1940 to 2000 at ½ degree 
resolution. 
 FAO’s digital soil texture map (FAO, 2003) at 5° resolution is used. The European Union 
Joint Research Center’s 30 arc seconds land cover map for the year 2000 over Southeast Asia 
(Beuchle et al., 2003) is also used. Finally, the agricultural census of India for the year 2000/01 
(agcensus.nic.in/cendata/databasehome.aspx) provides data on the area of crops grown. 
 The study area is delineated using the DEM and the D8 algorithm of the ILWIS hydro-
processing toolbox (ITC, 2009) to obtain a map of interconnected sub-basins. All spatial data sets 
are then re-sampled on a 8 × 8 km raster using a nearest neighbour method. Finally, basin-level 
average values of various variables are considered for later analysis.  

 

 
Fig. 1 Study area. 
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METHODOLOGY 

Model conceptualization  

Two dominant processes of dryland areas are modelled at monthly time steps and at the sub-basin 
scale (Liebe et al., 2009): evaporation and subsurface flows. Each sub-basin is conceptualized by a 
linear reservoir model, with precipitation and flows from upstream as influx, and flows 
downstream and evaporation as outflux. Flow is not decomposed into sub- and surface flows and 
is referred to as subsurface flow. However, intra-annual variation in water storage is modelled by 
enforcing storage at the end of the 12th month to be set as the storage at the beginning of the first 
month of the following year. 
 
 

 
Fig. 2 A spatially explicit parsimonious model concept. 

 
 

 Actual evaporation for each store i (see Fig. 2), at monthly steps, is conceptualized as the sum 
of a fraction, FcE, of precipitation and a fraction, FcE0 × Ki, of storage. Thus, evaporation is 
limited by water stress while the remaining precipitation fraction simultaneously contributes to 
infiltration (Reineker et al., 2007). The evaporation fraction of soil moisture conceptualizes that 
some of the available water storage also contributes to soil evaporation. The fraction is assumed to 
be proportional to hydraulic conductivity Ki, thus conceptualizing soil evaporation similarly to 
subsurface flow.  
 Evaporation demand from land cover is calculated based on FAO guidelines (FAO, 1998). 
Reference transpiration is calculated using the Hargreaves equation (Hargreaves et al., 1985), 
corrected by crop coefficients, to obtain evaporation demand. Land cover-specific evaporation 
demand acts as an upper bound on actual evaporation, wherein agricultural cover type (for the year 
2000) is further decomposed into constituent crop area shares based on the Indian agricultural 
census of 2000/01. 
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 Subsurface flow is conceptualized as a linear function of water storage. The storage-flow 
parameter, ki, is a linear function of hydraulic conductivity Ki via parameter FcK. Similar to 
transmissivity (Franchini et al., 1996), ki is location specific (store specific) with the multiple FcK 
being a function of store specific depth, anisotropy ratio, and a scale factor (similar to the e-folding 
length) (Fan et al., 2007). 
 
Parameter estimation 

Parsimony is introduced at the conceptual level. Spatial heterogeneity of the distributed lumped 
hydrological model is introduced via estimated hydraulic conductivity (Refsgaard & Storm, 1996). The 
geometric mean (by area) of hydraulic conductivity classified by soil texture (Rawls et al., 1982) data 
(FAO, 2003) corresponding to each store is used as its approximate saturated hydraulic conductivity 
at ground surface, and is assumed to decay with depth (Franchini et al., 1996; Fan et al., 2007).      
 The model parameters, {FcE0, FcE, FcK}, are calibrated by minimizing a joint objective 
function – the equally weighted sum of two mean square errors (MSEs). One MSE corresponds to 
the deviance between simulated changes in water storage and observed GRACE data, and the 
second MSE corresponds to the deviance between simulated evaporation and MERRA2D values. 
Besides model constraints, a “soft” constraint on maximum water storage in each store is 
introduced such that water storage at any time never exceeds annual precipitation. Land cover-
specific upper bounds on evaporation are also introduced. These are akin to the use of the “soft” 
information of Fenicia et al. (2008) in model selection and controls for model complexity, thereby 
lending robustness to parameter estimation (Vapnik, 2002). 
 
 

 
Fig. 3 Estimated hydraulic conductivity based on soil texture data of FAO (2003). Locations of sub-
basins 4 and 11 are also shown. The map was made using software of van den Boom & Pande (2007). 



A parsimonious modelling approach for water management in dryland areas 
 

89

 We use complementary sources of information to identify and parameterize the two fluxes 
(Fenicia et al., 2008). The two data sources, GRACE and MERRA2D, are based on different 
satellite products. One measures changes in terrestrial water storage; the other is based on re-
analysed data (Bosilovich, 2008). MERRA2D data controls evaporation parameters and the 
residual information in GRACE (including the effect of evaporation on storage changes) identifies 
subsurface flow parameters.  
 
 
RESULTS 

Using the described methodology and estimated hydraulic conductivity (see Fig. 3); Fig. 4 shows 
the performance of the estimated parameters for two sub-basins (from two different basins).  
 Sub-basin 4 belongs to the quicker response area, while sub-basin 11 belongs to the slower 
part. The left panel of Fig. 4 (Fig. 4(a) and (c)) compares model simulation of changes in monthly 
water storage with GRACE observations, while the right panel (Fig. 4(b) and (d)) compares 
simulated evaporation with MERRA2D data used for the two sub-basins. The GRACE and 
MERRA2D data shown were used to estimate the parameters.  
 The model is parsimonious in parameters and the data used for parameter estimation contains 
sufficient information to discriminate between the two out-fluxes. The additional “soft” constraints 
further control model complexity. The complexity control imbues confidence to the parameter 
estimation (may be limited by inadequate model structure) despite the limited observation data used.   
 The performance of estimated evaporation (Fig. 4(b) and (d)) appears to be adequate. One can 
observe that the model structure is inadequate to mimic the receding and the rising limbs of 
observed water storage change (Fig. 4(a) and (c)). This is due to suboptimal complexity of the 
chosen model structure and requires further investigation for diagnosis and correction.  
 

(a) (b) 

 
Fig. 4 Model performance: (a) and (b) predicted vs observed monthly storage change and evaporation 
respectively for sub-basin 4 (shown in Fig. 2); (c) and (d) display the same for sub-basin 11. The 
parameters of the model are also shown at the bottom. 

(d) (c) 
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KEY DISCUSSION POINTS 

We have introduced a parsimonious modelling approach for water management in dryland areas 
that relies on fewer data and aims to provide reliable predictions for water policy design and 
management. The key to reliable predictions in this approach is to represent only dominant 
processes and to regionalize parameter estimation. Controlling model complexity while estimating 
parameters for a given model structure ensures reliability.  
 The utility of such an approach is significant, from the development perspective, in dryland 
regions that lack infrastructure, investment, and good quality data. The approach can be easily and 
quickly adopted with minimal costs to run models at a monthly time scale for water management 
objectives such as scenarios of water availability, testing water allocation mechanisms for equity 
and efficiency, interventions in times of water scarcity, etc. 
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