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Abstract Hydrological applications are often unique. Each case study is different from the other, both 
because of the purpose of the application, and because of the variability of nature. Our tools, including 
models and diagnostic techniques, are often too rigid to adapt to each new requirement. This impacts our 
ability to address complex water-related problems both in engineering and in research. This paper shows the 
advantages of a flexible model structure in application to a case study. A variety of models are generated, 
which are applied to a headwater catchment in Luxembourg. The models are evaluated with an adapted 
GLUE methodology. GLUE has been often criticized for the subjective choices involved in its application, 
such as the selection of a discriminating threshold to separate “good” and “bad” models. Here we introduce 
a non-arbitrary flexible threshold which is automatically determined at a selected accuracy of prediction, 
with the objective of balancing predictive capability and parameter uncertainty. These tools aim at 
facilitating the understanding of the system’s behaviour, which is essential to assess the impact of human 
activities on water and vice versa.  
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1 INTRODUCTION 

A better understanding of the hydrological cycle is a research problem that has direct practical 
implications (Kovács, 1981). More specifically, problems associated with floods, droughts and 
water pollution require a better understanding of aspects related to storage dynamics, flow 
pathways and water transport. Hydrological models are important tools for the understanding and 
interpretation of the system behaviour, which ultimately serves water management and policy. 
 Hydrological models are useful when they provide the right answers for the right reasons 
(Kirchner, 2006). For this purpose, the choice of a hydrological model needs to be substantiated by 
meeting a number of requirements (Wagener et al., 2001). It is desirable that the model provides a 
realistic representation of the system; it is necessary that model parameters are well identifiable; 
and it is necessary that model predictions are precise and accurate.  
 These requirements may not be necessary for all applications. However, in general, they 
improve the utility of models both in research and in practice. Essentially, they help in placing 
confidence in a given model, which can then be used both as a tool to interpret and understand 
catchment behaviour and as an instrument for planning and decision making.   
 What exactly characterizes a successful application of a conceptual model has been widely 
debated in the literature. The objective of model realism has motivated the development of 
physically-meaningful model applications (e.g. Atkinson et al., 2002; Seibert & McDonnell, 2002; 
McDonnell et al., 2007). The issue of parameter identifiability or “equifinality” has inspired 
several model diagnostic approaches (Gupta et al., 2008) including the GLUE methodology (e.g. 
Freer et al., 1996; Beven, 2006). The need for precise and accurate prediction has inspired 
different calibration frameworks ( Gupta et al., 1998; Bates & Campbell, 2001). 
 Although there has been increasing attention towards these problems, we still lack the 
material and methods to build models that satisfy these main requirements. We struggle with the 
problem that each application is different from another, and therefore requires ad hoc solutions. 
This problem not only depends on the purpose of applications, it emerges from the intrinsic 
variability of nature (Beven, 2000). 
 The problem of “uniqueness of place” (Beven, 2000) indicates that it is necessary to be 
flexible in our approach and in the solutions to the modelling problem. Current model structures 
are often “fixed”, a priori conceived representations of reality. Hence, they have little chance of 
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being appropriate in a complex and heterogeneous world. Similarly, the approaches for model 
evaluation need to flexible enough to adapt to the requirements. 
 In this paper, we propose an application of a flexible model structure, to demonstrate its 
usefulness for understanding catchment behaviour. This model is based on the FLEX model of 
Fenicia et al. (2008). The model evaluation framework is an extension of the GLUE methodology. 
This methodology has been often criticized for the degrees of subjectivity that it involves. We 
propose a way to reduce this subjectivity by setting objective performance criteria, with the 
objective of balancing parameter uncertainty and predictive uncertainty. 
 The application of multiple model structures has an additional advantage over the application 
of a single model. It allows the user to learn more about the system’s behaviour through the 
comparison of different model structures and their performance. 
 
 
2 STUDY AREA 
The study area is the Huewelerbach catchment in Luxembourg. The catchment area is 2.7 km2, and 
its lithology is dominated by sandstone on top of an impermeable layer. The sandy soil layer is 
characterized by a high infiltration capacity, which allows the Huewelerbach to maintain a very 
stable baseflow regime. The riparian zone, however, is located on marls, and constitutes a fast 
runoff producing area. The dominant land use consists of forest and grassland. 
 Forcing data used for model evaluation are precipitation, potential evaporation and discharge. 
Evaporation is estimated based on temperature using the Hamon equation (Hamon & Belt, 1973). 
The data time step is 1 h and the calibration record runs from 1 July 2003 until 31 August 2005.  
 
 
3 METHODOLOGY  
3.1 Model description 
The modelling framework is based on the FLEX model of Fenicia et al. (2008). We here develop a 
complex (redundant) structure, which is represented in Fig. 1. From this structure, it is possible to 
generate simpler model architectures as subsets of the more complex structure.  
 The model is characterized by five reservoirs. IR accounts for interception, RR represents a 
riparian zone or an impervious zone directly connected to the stream, UR is the unsaturated soil 
reservoir, FR accounts for the fast component of discharge, and SR accounts for baseflow. 
 

 
Fig. 1 Schematic representation of the complete FLEX model structure from which simpler structures 
have been generated.    
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 Precipitation P is partitioned into a fraction, f, that goes to RR, and a fraction (1 – f) that 
reaches IR, from which it can evaporate at a rate, Ep, as long as there is water available. Water that 
exceeds the threshold, Imax, is routed through UR, from which it is partitioned in what is stored in 
UR and what flows to other reservoirs. The partitioning is determined through a runoff coefficient 
Cr, which is a function of the storage in UR (Su) and can assume different expressions. We 
considered a step function, a logistic function, and a power function. The step function represents a 
threshold behaviour, meaning that all water infiltrates into UR if Su is less than the maximum 
storage, Su,max, and it is routed to subsequent reservoirs otherwise. The logistic function can be 
interpreted as a smooth threshold. The power function is used in the HBV model (Lindstrom et al., 
1997) and in most of its derivations (among others, HyMod, Vrugt et al., 2003; TAC, Uhlenbrook 
& Leibundgut, 2002). The energy that is not consumed in the interception process is available for 
transpiration from UR, which is moisture constrained through a parameter Lp. 
 The flux that does not infiltrate into UR is partitioned into Rf which reaches FR and Rs 
(representing preferential recharge) through a coefficient D. Rf is convoluted through a triangular 
transfer function, and then routed through FR which can be a linear or nonlinear reservoir. SR and 
RR are both linear reservoirs. Model equations are summarized in Table 1. 
 By including or excluding different components, and changing constitutive relations, we have 
generated 16 different model structures, which are described in Table 2. 
 The model has been implemented using the explicit Euler modelling scheme, which is still 
predominant in hydrological applications. In future work we will reformulate the Flex model for 
using different, more accurate, time stepping schemes. 
 
3.2 GLUE revisited 

The GLUE methodology (e.g. Freer et al., 1996; Beven, 2006) is based on the concept of 
equifinality, which encourages the acceptance of many feasible descriptions of reality. In practice, 
the GLUE methodology is based on the following steps. After specifying feasible ranges of model 
parameters, a high number of parameter sets is generated via uniform sampling. The performance 
of each trial is assessed through a likelihood measure (e.g. the Nash & Sutcliffe coefficient). Only 
 
 
Table 1 Description of model components. 
Equations Description 
Pr = fP Precipitation on RR 
Pc = (1 – f)P Precipitation on the rest of the catchment  
EIR = Ep (if Si.> 0), 0 (if Si = 0) Evaporation from IR 
Pe = Pc (if SIR = SI,max), 0 (otherwise) Effective precipitation 
Cr = case s: 0 (if Su<Su,max), 1 (otherwise): 
 case p: (Su/Su,max)βp 
 case l: 
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Coefficient of runoff 

EUR = (Ep –EIR)min(1,Su/(Lp Su,max)) Transpiration from UR 
Ru = (1 – Cr)Pe Infiltration into UR 
Rp = CrDPe Preferential flow 
Rf = Pe – Ru – Rs Flux to FR 
Rfc = Rf × f(Nlag,f) Rf convoluted through the transfer function 
Rs = (Su/Su,max)Pmax Percolation 
Qr = KrSr Outflow from RR 
Qf = KfSf

α Outflow from FR  
Qs = KsSs Outflow from SR 
Qtot = Qr+ Qf + Qs Total discharge 
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Table 2 Schematic description of the 16 model structures. Nstr is the model structure identification number, 
Npar is the number of parameters, IR–SR are the names given to the reservoirs, Cr is the coefficient of runoff 
defined by a step (s), logistic (l) or power (p) function. The symbols v and - show the presence or absence of 
a component or parameter. Parameter α = 1 when FR is linear. 

Nstr Npar IR RR UR FR SR Cr Imax Lp Su,max βp βl Pmax D Nlag,f Kf α Ks f Kr 
1 4 - - v v - s - v v - - - - v v - - - - 
2 5 - - v v - s - v v - - - - v v v - - - 
3 6 - - v v - l - v v - v - - v v v - - - 
4 6 - - v v - p - v v v - - - v v v - - - 
5 7 v - v v - l v v v - v - - v v v - - - 
6 7 v - v v - p v v v v - - - v v v - - - 
7 8 - v v v - l - v v - v - - v v v - v v 
8 9 v v v v - l v v v - v - - v v v - v v 
9 7 - - v v v l - v v - v v - v v - v - - 
10 7 - - v v v l - v v - v - v v v - v - - 
11 8 v - v v v l v v v - v - v v v - v - - 
12 8 - - v v v l - v v - v v v v v - v - - 
13 8 - - v v v p - v v v - v v v v - v - - 
14 7 - - v v v s - v v - - v v v v - v - - 
15 9 v - v v v l v v v - v v v v v - v - - 
16 11 v v v v v l v v v - v v v v v - v v v 
 
 
models (parameter sets and model structure combinations) that provide a likelihood measure 
reaching a minimum threshold are retained as “behavioural”. The others are discarded as “non-
behavioural”. 
 The GLUE methodology has often been criticized for the subjectivity involved in the choice 
of the likelihood measure and the discriminating threshold (e.g. Montanari, 2005; Xiong & 
O’Connor, 2008). These studies have shown that both parameter uncertainty and model prediction 
bands are sensitive to the choice of the threshold values. These criticisms have motivated an 
extension of GLUE towards a “limits of acceptability” approach (Blazkova & Beven, 2009; Liu et 
al., 2009), which, instead of applying a behavioural threshold to the likelihood measure, specifies 
an uncertainty band on the model predictions. Behavioural models are then those that provide 
predicted variables that fall within the limits of acceptability. 
 While this approach reduces the subjectivity of previous GLUE implementations (the limits of 
acceptability could be determined through an analysis of the rating curve), it is not difficult to 
anticipate some drawbacks from the adjustments that have been proposed. First, the limits of 
acceptability, which need to be specified prior to the use of a model, have to accommodate both 
input and output errors. This is a challenging operation, as the effect of input error (e.g. rainfall 
uncertainty) on the observed output (e.g. discharge) is often difficult to quantify. Second, the 
pattern of the observations may be more informative than the exact values. An error band that 
comprises the observed variables may hide important information. 
 In this application, we propose a different approach to limit GLUE’s subjectivity. The 
approach consists of adopting a “moving” threshold to the likelihood measure, which can be 
adjusted depending on the model’s ability to describe the observations (Fig. 2). Specifically, we 
first define an observation uncertainty band around the observed hydrograph, based on output error 
analysis. This step is similar to the definition of limits of acceptability around the observed 
variables. Subsequently, GLUE is applied and prediction uncertainty bands are evaluated based on 
the definition of a performance measure and a corresponding behavioural threshold. The main 
difference to GLUE is that this performance threshold is determined so that the interception 
between the observation and prediction uncertainty bands covers a predefined proportion of the 
observations (Fig. 2).   
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Fig. 2 Schematic diagram of model evaluation approach.  

 
 
4 RESULTS 

We divide the results section into three subsections where we separately illustrate the outcomes of 
the study for the three basins with respect to: (i) accuracy measured by the selected objective 
function, (ii) uncertainty in model parameters and model response, and (iii) model realism. In the 
discussion section, the results are interpreted and discussed. 
 
4.1 Model accuracy 

Model accuracy with respect to hydrograph simulation is represented through the objective 
function FNS, directly related to the Nash and Sutcliffe coefficient, CNS: 
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where i is the current observation, the subscripts o and m stand for observed and modelled, QT is 
discharge after an eventual transformation T, the overbar indicates an average over the observation 
period. The transformation T applied to the discharge is as follows: QT = ln(Q + ε) where ε =10-3. 
The log-transformation enhances the error on low flows. Lower values of FNS indicate better 
performance. 
 Figure 3 shows the performance of the 16 model structures on the Huewelerbach catchment. It 
is generally believed that more complex models, disposing of more degrees of freedom, have a 
larger ability of fitting the data. Figure 3 demonstrates that this is not always the case, showing 
that parsimonious models can perform better than more complex ones. This underlines the 
importance of model concept over model complexity. 
 The performance of the models in the Huewelerbach catchment differs substantially. Here it 
clearly appears that models 1–6, all characterized by a “horizontal” structure, without an explicit 
description of the groundwater system, perform poorly. This shows that in this catchment it is 
necessary to specify a groundwater component. Models 7 and 8, which are characterized by a FR 
and a RR reservoir, perform better. However they are outperformed by subsequent models. In 
models 7 and 8, FR will act as a groundwater reservoir, while RR will tend to simulate the peaks. 
Structure 14 performs badly due to the threshold function adopted to describe the partitioning of 
rainfall in UR. It appears that in this catchment smoother functions work better. 
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Fig. 3 Comparison of model performance on the Huewelerbach catchment. 

 
 
4.2 Parameter uncertainty 

As illustrated in Section 3, we have quantified parameter uncertainty by scaling the likelihood 
threshold. This threshold was determined in such a way that the intersection between the 
observation discharge band and the simulation discharge band, obtained by calculating the 5–95% 
quantiles of the simulated discharge distribution, covers a certain percentage PQ of the 
observations. PQ has been set at 90%. 
 Figure 4 shows the cumulative distribution functions (cdf) of model parameters for the 
Huewelerbach catchment. The steeper the line of the cdf, the more identifiable is the 
corresponding model parameter. It is interesting to observe the performance of structures 1–8 in 
relation to parameter uncertainty (Fig. 4). These structures miss a groundwater component. As FNS 
is not so sensitive to the correct simulation of low flows, FR will tend to simulate the baseflow, 
acting as a groundwater reservoir. The steep lines in the subplot of Kf, which indicates the 
timescale of FR, correspond to these models. Models 7 and 8 perform better than previous models. 
These models include RR, which acts as a fast reacting reservoir, while FR continues to represent 
the baseflow component. The partitioning of rainfall in the two reservoirs is constant, depending 
on parameter f. The performance of these two models is worse than subsequent models, indicating 
that such a description of processes can be improved, as it will be explained later. 
 
4.3 Model predictive uncertainty 

The hydrograph uncertainty bands of selected model architectures on the Huewelerbach catchment 
are represented in Fig. 5. Structure 3 does not include a groundwater component. The single 
reservoir FR is not able to capture the dynamics of observed discharge in this catchment. As a 
result, the hydrograph uncertainty band is extremely large when compared to that of subsequent 
models. Structures 1 to 6 (not shown in the figure for reason of clarity) follow a similar behaviour. 
Structure 7 (Str. 8 has a similar behaviour) has a better performance. However, in general, it 
under-predicts peaks during wet conditions, and it over-predicts peaks during dry conditions. This 
is due to the constant partition of flow between a fast (RR) and a slow (FR) component, which is 
represented by the parameter f. A soil-moisture dependent flow partition, as represented by Cr, 
results in a better performance, as shown by structures 10 and 11. Structure 11 performs slightly 
better than Structure 10 (6%) due to the inclusion of an interception component, which has the 
effect of levelling out secondary peaks due to small isolated rainfall events. 
 Structure 16 seems to be overly complex, with parameter Kr not well identifiable (Fig. 4). The 
hydrograph uncertainty band does not reduce sensibly, and model performance improves only 
slightly.  



An approach for matching accuracy and predictive capability in hydrological model development 
 

97

   
Fig. 4 Parameter uncertainty for the Huewelerbach catchment.  

 
 

 
Fig. 5 Comparison of the hydrograph uncertainty bands of selected model structures on Huewelerbach 
catchment. 
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5 DISCUSSION  

The application of multiple models on a given catchment is an improvement with respect to the 
traditional practice of applying a single, preconceived model. First of all, through a flexible 
modelling approach it may be possible to fulfil what are perceived to be the main requirements 
that an appropriate modelling application should demonstrate (Wagener et al., 2001). These are:  
(i) an appropriate balance between model complexity and data availability, which should result in 
an accurate and precise model output while providing well identifiable model parameters, (ii) a 
model structure which is realistic in terms of process representation, that is, which is in accordance 
with the perceived functioning of the catchment, and (iii) a model configuration that fits the 
purpose of the application. In addition, through the application of multiple model structure it is 
possible to have an overall view on the relative importance of different processes and components, 
which allows a better understanding of catchment behaviour. 
 The GLUE methodology has been often criticized for its subjective decisions (e.g. Montanari, 
2005; Xiong & O’Connor, 2008). We propose some adjustments to this methodology, which 
reduce the subjectivity about the selection of a “behavioural” threshold to the likelihood function. 
These modifications allow more meaningful estimations of prediction limits and parameter 
uncertainty.  
 For the Huewelerbach catchment, the application of our methodology has allowed a better 
understanding of its behaviour. By adding and removing reservoirs, it was possible to appreciate 
the fundamental role of a groundwater component. The choice of different relations in the soil 
moisture component has allowed appreciation of the role of soil moisture on water partitioning 
between a quick and a slow flow component.  
 Overall, we believe that a move away from the single model–single catchment working 
paradigm may improve research in hydrology. In particular, it may help in catchment 
classification, as it may allow a better understanding in differences and similarities of the 
functional behaviour of different catchments. 
 
 
6 CONCLUSIONS 

This work deals with the application of 16 different model structures to a headwater watershed in 
Luxembourg. Through this exercise we show the importance of moving away from the “single 
model–single catchment” working paradigm. The application of multiple models allows 
identifying models that reflect a balance between their complexity and data availability. In 
addition, it favours a better understanding of catchment behaviour. These models were evaluated 
with a modified GLUE methodology, which allows a flexible selection of the behavioural 
threshold. This adjustment allows matching accuracy and predictive capacity in hydrological 
modelling. These tools are useful for an improved understanding of the system behaviour, and 
ultimately for water management and engineering applications. 
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