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Abstract Accurate river flows are crucial for effective water resource management. However, estimating 
flows in ungauged rivers, particularly those in difficult to access terrains, is a challenging problem for water 
scientists and managers. As a solution, hydrological regionalisation (HR) has been proposed to estimate 
river flows based on proxy-basin, interpolation and regression methods. Recently, neural networks have 
been shown to produce improved estimates. In this study, HR-based artificial neural networks (ANN) 
models were developed for estimating monthly flows in ungauged rivers in New Zealand using hydrological 
and geomorphological attributes. After rigorous input selection, multilayer perceptron (MLP) networks were 
first developed by trial and error. Then, a new MLP method, not involving trial and error, was developed by 
clustering the correlated hidden neurons in a trained MLP to simplify the model structure; this produced 
overall better results than the trial-and-error MLP and a genetic algorithm optimised MLP. Results show that 
accurate and parsimonious MLP models can be developed for flow estimation based on HR using the new 
method. Therefore, the study presents the hydrological community with improved neural networks tools 
based on HR to estimate flows in ungauged rivers for more effective water management.          
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INTRODUCTION 

Hydrological processes are characterised by high complexity, dynamism, and nonlinearity in both 
spatial and temporal scales. Lack of physical understanding of these processes has hampered the 
development of efficient models to study their behaviour and manage water resources effectively. 
The last decade has seen ANN applications in all areas of water resources (Adeli, 2001), mainly 
due to their ability to nonlinearly relate input and output variables and capture temporal dynamics 
in complex dynamical systems without needing a detailed understanding of the physics of the 
processes involved. There is a variety of existing conceptual and mathematical hydrological 
rainfall–runoff models, but there is always the difficulty in choosing, calibrating and validating 
parameters; therefore, incremental parameter estimation by ANN from historical data offers an 
attractive advantage.   
 The three major types of ANN used in water resources are: Multiple Layer Perceptrons (MLP) – 
a powerful multivariate nonlinear regressor; Recurrent Neural Networks (RNN) – a nonlinear 
autoregressive network for time-series forecasting, and Self Organising Maps (SOM) – a nonlinear 
unsupervised clustering approach that reveals clusters in the data while preserving cluster proximity; 
and hybridisations of the above network types as well as their newer variants (Samarasinghe, 2006).  
 When rivers are not gauged, HR assumes that hydrological and geomorphological similarity 
with nearby basins can be used for estimating their flows (Bormannet et al., 1999) for managing 
water resources. The simplest approach is the direct transfer of model parameters to ungauged 
basins from nearby basins using, for example, the proxy-basin method (Xu, 1999), linear 
interpolation methods (Guo et al., 2001) and kriging interpolation methods (Vandewiele & Elias, 
1995). Another approach includes a two-step regression procedure where models relating 
hydrological variables to flows are developed for each gauged river in the first step, and the model 
parameters are related to the geomorphological characteristics of basins in the second step to obtain 
accurate parameters for the ungauged rivers (Tung et al., 1997). Recently, a single step model 
involving ANN using both hydrological and geomorphological variables together has been shown 
to be superior to both one step and two-step regression (Cutore et al., 2007). However, there are 
several modelling issues to be addressed to make ANN more efficient in flow prediction from HR 
as well as in other applications. One of these issues is the optimisation of hidden layers of ANN.  

Copyright © 2010 IAHS Press 
 



Sandhya Samarasinghe 
 

210 

 This paper highlights some current issues in ANN and presents a new network pruning 
approach based on SOM clustering of redundant MLP neurons for effective HR based flow 
estimation of an ungauged river in a seven-river basin in New Zealand.  
 
 
NEURAL NETWORKS 
In a neural network, a number of computational neurons are organised in layers in a highly parallel 
network in such a way that inputs flowing through the network can interact nonlinearly developing 
complex input-output mapping functions. Figure 1 shows a typical MLP network with input, 
hidden and output layers connected to each other with weights (model parameters). The output z is 
a function of inputs and model parameters:  
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where X is the input vector, aij is the input-hidden layer weights and bj is the hidden-output neuron 
weights with a0j and b0j representing the bias weights. A hidden neuron j produces its output yj by 
transforming the weighted sum of its inputs through function f2(.) and the output neuron computes 
the network output z by transforming the weighted sum of its inputs with f1(.). Nonlinear functions 
in the hidden and output neurons give the network nonlinear capability, and the number of hidden 
neurons provides the ability to represent an arbitrarily complex function to any desired accuracy. 
The ANN must be trained incrementally by repeatedly processing historical data while adjusting 
model parameters based on one of several training methods until the network output converges to 
the target output. An error criterion such as RMSE is used to measure the prediction accuracy.  
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Fig. 1 (a) MLP neural network and (b) Self Organising Map network. 
 
 
 Figure 1(b) shows the structure of SOM that consists of n neurons arranged in a grid. Input 
vectors (X1,…, Xn) are presented to neurons with initially randomized weight vectors (W1,…, Wn). 
First, the winning neuron closest to each input vector is found from the minimum distance d 
between all weights and the input (equation (2)). Then, the weights of the winner and s neurons in 
its neighbourhood are adjusted in each iteration t using a neighbourhood function N(s,t) to 
preserve the proximity of data using a learning rate η(t) (equation (2)). Over repeated iterations, 
where both η(t) and N(s,t) functions decrease with time, SOM learns to represent the inputs 
accurately showing clusters and their spatial relations:   
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 One of the major issues in MLP is finding the simplest model with consistent model 
parameters for a particular problem. This can be addressed by selecting crucial inputs and 
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optimizing the hidden layer. Use of independent inputs that are the most relevant to the output 
simplifies the ANN structure and various statistical methods, including simple and partial 
correlation, principal components analysis, etc., have been used. Optimising the hidden layer is 
more complex and the current methods, such as optimal brain damage (OBD), require pruning and 
training of the reduced network in several iterations until the optimum structure is obtained. 
Another popular method, genetic algorithms (GA), also uses extensive searches in optimizing the 
hidden layer (Samarasinghe, 2006).   
 This paper presents a new approach to automatically find the number of neurons in an MLP 
based on the idea that redundant neurons in a network have correlated activations (Samarasinghe, 
2007). An MLP with a relatively large network is developed first and weighted hidden neuron 
activations bjyj are used as input to an SOM trained with correlation distance measure, followed by 
Ward clustering (Samarasinghe, 2006) to cluster correlated hidden neuron activations (SOMCNA). 
The number of clusters indicates the required number of neurons in the MLP. The method is 
applied to estimate flows in an ungauged river in a large basin in New Zealand.   
 
 
FLOW ESTIMATION OF UNGAUGED RIVERS 

Seven river basins in the Canterbury Region in New Zealand were selected: Waipara, Ashley, 
Halswell, Selwyn, South Ashburton, North Ashburton and Rangitata rivers. Waipara River was 
selected to depict an ungauged river. In developing an ANN, a series of hydrological and physical 
concepts can be rationally applied to inform the model of important interactions underlying the 
dynamic process. For example, rainfall runoff is the major factor affecting river flows. Runoff is 
affected by drainage area; average ground slope; rainfall interception mainly by forest canopy and 
land use; evaporation and evapotranspiration affected by soil type; a basin’s shape or form (basin 
length/width ratio) and drainage density (ratio of the total channel-segment lengths to basin area).  
 For each basin, monthly average flow and rainfall time series were computed from daily data 
recorded for periods ranging from 5 to 29 years by Environment Canterbury (Ecan, New Zealand). 
The following data were obtained from GIS databases: drainage area, average slope, drainage 
density, basin form, vegetation type and land-use categories, such as urban, pasture, or preserved 
areas. A new variable, compound factor was introduced as (total area – forested area).  
 A statistical data pre-processing stage was implemented to clean the data, study relationships 
and trends, and contrast data from different basins for consistency. Average monthly flows in the 
seven rivers followed the expected seasonal precipitation patterns in the region. Correlation and 
partial correlation were performed in three stages, incrementally incorporating several flow and 
precipitations lags in each stage, to select key inputs that have the highest correlation to flow and 
least correlation to themselves. The selected final set of three inputs and their partial and simple 
correlations with the flow are: previous month’s flow (0.3518, 0.845), current precipitation 
(0.5573, 0.675), and the compound factor (0.3304, 0.858).   
 
ANN model development 

Networks (MLP) were developed on Matlab (2009) to predict Waipara River flows (validation set 
with 63 data points). The rest of the data were divided into training (70%) and calibration (30%) 
with 1079 and 269 data points, respectively. The Levenberg Marquardt method was used for 
training with data scaled between 0 and 1, and early-stopping was used to preventing overfitting. 
The ANN models with sigmoid hidden neuron and linear output functions were developed using: 
trial and error, SOMCNA and GA; and an MLR model was also developed. The best ANN from 
each method was re-run with 10 random weight initialisations and R2, RMSE and mean error were 
used for assessing their performance. Results are shown in Table 1 and Fig. 3 and discussed below.   
 Networks were developed in two stages by trial and error: first with the three selected inputs 
and then sequentially adding secondary variables, as partial correlation only reveals linear 
relationships. Introduction of basin form thus improved network results. The best network had four 
inputs (previous flow, current precipitation, basin form and compound factor) and 70 hidden neurons.  
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 (a)      (b) 

        
Fig. 2 (a) Ward likelihood index against potential number of clusters, and (b) two optimum clusters 
found by SOMCNA. 
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Fig. 3 Estimated flows for validation set from ANN obtained from trial and error, SOMCNA and GA 
superimposed on actual flows sorted in ascending order.  

 
 
Table 1 Performance measures of flow estimation models on validation data. 
Measure/Method MLR SOMCNA(2N) GA (15N) 70N 
R2 0.15 0.62 0.61 0.67 
ME 0.0067 –0.0037 0.002 –0.0028 
RMSE 0.0162 0.011 0.011 0.010 
 
 
ANN structure optimization  

In SOMCNA, an MLP with 100 hidden neurons was trained with the four inputs and SOM was 
applied to cluster the hidden neurons. Results revealed two optimum clusters as shown by the 
maximum Ward likelihood index in Fig. 2(a) with the resulting two clusters depicted on the 
trained SOM in Fig. 2(b) where the numbers indicate neurons on the original SOM. GA based 
optimization using 20 populations and 100 generations for 100 epochs with double point 
crossover, uniform mutation with probability of mutation of 0.1 and tournament selection 
(Synapse, 2006) resulted in 15 optimum hidden neurons. Results from trial and error, SOMCNA 
and GA and MLR indicate that all ANN models have performed better than MLR and SOMCNA 
has produced the simplest model (Table 1) and better performance overall than the two larger 
networks (thin line in Fig. 3) indicating the efficacy SOMCNA. As Fig. 3 shows, SOMCNA 
results, for the most part, more closely follow the actual flow than the predictions from the other 
models. RMSE is the same across the networks and other parameters are similar with different 
networks producing the maximum. A sensitivity analysis on the networks revealed the following 
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contributions: precipitation (36%), previous flow (24%), compound factor (22%) and basin form 
(18%).  
 
 
SUMMARY AND CONCLUSIONS 

Estimating flows in ungauged rivers, particularly those in difficult-to-access terrains, is a 
challenging problem for water scientists and managers. Hydrological regionalisation (HR) has 
been proposed to address this issue using several approaches, including proxy-basin, linear 
interpolation and regression methods (Vandewiele & Elias, 1995; Xu, 1999; Guo et al., 2001). 
Recently, neural networks have been shown to produce improved estimates (Cutore et al., 2007). 
In this study, an improved ANN model based on SOM-based clustering of hidden neurons was 
successfully developed and validated for estimating flows in an ungauged river using HR. The 
pruned network had a similar performance to that obtained from trial and error and GA 
optimisation. However, the new method requires training of only one MLP and one application of 
the pruning method thereby eliminating trial and error in model development and iterative pruning 
in structure optimisation. Therefore, the study presents the hydrological community with an 
efficient approach to develop neural networks based on HR to estimate flows in ungauged rivers 
for more effective water management.           
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