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Abstract Water resources planning and management require problem resolution and optimized use of 
resources. Since many objectives in water management are conflicting, it is hard to devise one optimum 
strategy. A simulation tool capable of optimized multi-objective analysis to satisfy a multiplicity of goals is 
needed to support water decision making. This paper suggests an integrated modelling framework to assist 
with time consuming and difficult tasks of decision making by water management practitioners and to 
harmonize economic uses of water resources. Motivated machine learning, presented in this paper, supports 
intelligent decision-making processes in dynamically changing environments and could be used to consider 
alternative water management policies. Motivated learning systems learn to properly control the 
environment with competing goals. They provide a natural support for multi-objective decision making in an 
active search for balance between conflicting situations and adverse environmental conditions. A case study 
of optimized machine learning water management decisions is presented. 
Key words  multi-objective analysis; water management; dynamic environments; motivated learning; competing goals; 
goal creation 
 
 

INTRODUCTION 

Planning and management of water resources is based on the shared interests of all the 
stakeholders involved and has a significant effect on their economies and quality of life. Despite 
the increasing importance of modelling in water resources planning and management, no single 
tool or methodology provides a satisfactory solution. There is uncertainty in how to use data, how 
to develop infrastructure, which objectives must be satisfied, how to share resources and how to 
plan and coordinate joint efforts. The available models are mostly limited to regional-level 
strategies, while the challenges are transdisciplinary and involve expertise from many sciences and 
engineering fields. Water allocation between conflicting uses and among competitive users is 
becoming an important issue. Intense competition arises between countries and between users, 
even within the same country during a lean season. Uncertainty of future changes in climate and 
water uses, the complexity of water-related effects on the environment, health and development, 
economy and policy making are critical to reaching acceptable solutions.  
 Water resources systems have many mutually dependent factors and are at the heart of 
economic policy making between the nations that share water resources. Managers and planners 
involved in developing these policies must identify and evaluate alternative designs. There is a 
growing demand for integrating mutual dependencies of water sciences and policy making. 
Therefore, a need for legitimate scientific data and integrated optimization tools to estimate values 
of decision variables that best support specified objectives has been emphasized repeatedly.  
 Water is needed to satisfy the basic human needs such as hygiene, drinking, cooking, farming 
and recreation. The quality of water must be protected by proper legislatures, monitoring, and 
enforcement to prevent water-borne diseases, prevent water contamination, and protect 
ecosystems. Ordinary people suffer if everyone involved tries to extract as much water as one can 
get and degrades the water resource. Water resource management involves monitoring and 
management of water quality and quantity, and making plans and predictions related to water 
usage and supply, water storage and purification, contamination control and law enforcement. This 
raises a number of questions, such as what policies and legal framework can promote sustainable 
use of water, or how to protect water resources from overuse and contamination?  
 Understanding of natural processes as well as their social and economic impact on society, 
services, or resources provided by rivers, lakes, reservoirs and wetlands is important for successful 
water management and policy making. These processes involve many physical and biological 
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systems interdependencies whose understanding is at the core of successful decision making and 
planning. It has become increasingly evident that the water problem has become too complex, 
interconnected and large to be handled by any one institution or group of professionals, 
irrespective of their competence, authority and good intentions.  
 Decision makers are ready to consider the uncertainty that results from model imperfections and 
their impact on the predicted outcomes of the decisions made. Promoting agreeable-to-all decision-
making procedures and incorporation of uncertainty into model parameters are critical to economic 
development and security in developing societies. Current management regimes for determination of 
what is good for people can fail and result in poor water quality and related society ills. Monitoring 
the impact of water management policies and execution of effective monitoring plans are vital to 
assess how well the policies are meeting people’s expectations. This may require setting proper 
guidelines for measuring performance indicators, such that the decision makers can be informed 
about the results of their actions and may adapt their policies to satisfy changing requirements. 
 Water resources affect a variety of economic, environmental, and ecological issues and may 
result in social tension and affect the quality of life. They also serve other useful roles, such as 
drought and flood control, hydro-energy production, transport, recreation and waste disposal. Local 
community roles and initiatives in water management practices are a key to improving socially 
critical aspects of insufficient water supply and improving water quality. Participation of local 
communities in water management results in better organization and more effective utilization of 
water than the services provided by governmental agencies. Cooperative management to facilitate 
water use seems inescapable, since such cooperation is critical for sustainable use of water.  
 Various performance criteria can be used to provide measures of how well the water-related 
problems are addressed by the system. Due to a variety of goals some of these criteria may be in 
conflict with others and various trade-offs must be considered. It is a challenge to evolve strategies 
for equitable and sustainable water use by creating frameworks for rapid policy changes. The 
relations between the society and the policy makers have become polarized around water 
resources, and it is necessary to create assessment and modelling tools to improve policy making 
and facilitate interaction. 
 Computer simulation, modelling and decision support tools provide only a partial guidance to 
the decision-making process by synthesizing and optimizing results of quantitative analyses based 
on the provided data and modelling objectives. Various models have been developed to assess and 
predict water supply and water quality and their impact on economic and social development. 
Advanced computerized models include optimization methods, fuzzy sets, genetic programming, 
data mining and artificial neural networks. Machine simulation of model uncertainty involves 
statistical methods, probability estimation, stochastic modelling and sensitivity analysis.  
 For instance, a decision support system for water management discussed by Muleta & Nicklow 
(2005) combined evolutionary algorithms with a watershed simulation model to arrive at recom-
mended land use through the solution of a multi-objective optimization problem. The model used a 
soil and water assessment tool for evaluation of the objective function and used the strength of the 
evolutionary algorithms to handle multiple objectives. This model can be applied on various water-
shed scales. Msiza et al. (2008) used computational intelligence techniques for modelling and 
prediction of short-term and long-term water demands. The paper used a growing power of computa-
tional intelligence to model the dynamically changing environment and decision-making process. 
 This work improves on the existing computerized methods, proposing a machine learning 
approach, known as motivated learning, to support the decision-making process. It addresses 
critical issues of water resource planning and management, such as model and data uncertainty, 
dynamic changes in the environment, development of policy making process, or handling of 
competing and often conflicting goals. 
 
MOTIVATED MACHINE LEARNING MODELS 
Water resource management tools include simulation, optimization and multi-objective analysis. The 
question is how to design a simulation tool to support water decision-making satisfying a multiplicity 
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of goals including multi-objective decisions. Computerized models were used for many years to 
support water-related decision making and water resource management. However, model develop-
ment is limited to the expertise of those who propose them, and as a result models often overly 
simplify dynamics of economic, social and environmental interactions and lead to inappropriate 
policy making and management decisions. A different approach is proposed in this paper, in which 
models are replaced with real, dynamically changing environments with all of their complex 
intricacies and societal dependencies. This idea has been successfully applied to the development of 
autonomous robots which interact with dynamically changing environments and learn proper 
interactions without building environment models, but rather using the environment the way it is. 
 The main objective of this paper is to suggest an integrated modelling framework that may 
assist with the time-consuming and difficult tasks of decision making by water management 
practitioners, and harmonization of economic uses of water resources. An integrated and effective 
machine learning platform may help to build effective partnerships between modellers and 
practitioners in the development and application of water management models and observe them 
in handling simulated crisis situations. Motivated machine learning that provides seamless support 
for intelligent decision-making processes in dynamically changing environments could be applied 
to consider alternative water management policies. It may be able to incorporate socio-cultural, 
political, economic and institutional elements that influence decision making, addressing non-
dominated solutions.  
 This framework uses a goal creation approach in embodied intelligence (EI) that motivates the 
machine to develop into a useful research tool through active interaction with the real 
environment. It integrates modelling with planning, decision making, policy implementation and 
evaluation, using dynamic feedback from the field to modify models and the decision-making 
process. The method adapts to changes in the environment conditions, and resistance to policy 
implementation, and human factors, showing robustness under uncertain parameters, imperfect 
data, and imperfect models. 
 In the motivated learning (ML) systems, different types of data received from the environment 
are associated and represented to build knowledge and the environmental model. This representation 
is validated through active interaction with the environment. Learning in such systems is 
incremental, with constant prediction of the input associations based on the emerging models and 
only new information is registered in the system memory. Knowledge is not entered into such 
systems, but rather is a result of their successful use in a given environment. ML provides natural 
support for multi-objective decision making, focusing on the most pressing issues in an active search 
for balance between conflicting situations and adverse environmental conditions. 
 Motivated intelligent systems adapt to unpredictable and dynamic situations in the environment 
by learning, which gives them a high degree of autonomy, making them a perfect choice to support 
human decision making (Pfeifer & Bongard, 2007). This approach described by Starzyk (2008) uses 
emerging, self-organizing, goal creation (GC) systems that motivate embodied intelligence to learn 
how to efficiently interact with the environment. The motivated learning mechanism was designed to 
provide motivations to the learning machine that combine its externally driven goals with internal 
goals that emerged from the developmental process and are controlled internally by the machine. 
Motivated learning first learns dependencies between objects in the environment and the externally 
set objectives (controlled by the external rewards), and subsequently, uses these observations to set 
internal goals. Most of the time the machine responds to specific goals, trying to find solutions to the 
problem set, so it explores the environment with a specific objective. Motivated learning uses 
negative reward systems as its major reinforcement. Negative signals (also known as pain signals) 
are received from the environment and need to be minimized (synonym of reward). If the negative 
signals increase instead of being reduced, this corresponds to a negative reward and the machine 
learns not to perform actions that resulted in such an increase. 
 A ML machine is in a continuous process of building new motivations and responding to 
established ones. Competing signals that represent abstract pains and attention-switching direct the 
machine to choose a goal to act on and to follow this goal. These signals vary as the machine acts 
and the environment around it changes. The mechanism to build motivations and choose goals, 
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triggers learning of intentional representations and establishes associations between sensory 
observations and motor actions. The machine responds to the observed environment changes and 
to its own internally generated pain signals to choose the proper action. This response is as much a 
result of top-down deliberation and prediction of what will be the result of its action, as of bottom-
up perceptions, experiences and past history of interactions with the environments.  
 It is suggested to further extend the ML approach and to apply it to practical and theoretical 
aspects of water management in changing environments, where the existing methods fail or work 
with difficulty. For instance, using classical machine learning to predict the future for physical 
processes works only under the assumption that the same processes will repeat. However, if a 
process changes beyond certain limits, the prediction will not be correct. The expectation is that 
ML systems may overcome this difficulty and that such systems can be trained to advise humans. 
 
 
CREATION OF ABSTRACT MOTIVATIONS AND ABSTRACT GOALS 

An abstract pain signal is created once the machine is unable to perform the action that resulted in 
the reduction of the lower-level pain. For instance, if a machine needed a certain resource to 
alleviate its primitive pain, and the resource is not available or is hard to find, this creates an 
abstract pain signal. This abstract pain motivates the machine to explore how to obtain the missing 
resource. An abstract pain centre is not stimulated from a physical pain sensor; it only symbolizes 
the pain of not having the resource that the machine needs to prevent the primitive pain.  
 Suppose that an agent receives several “primitive” pain signals that indicate that he is “dirty”, 
“thirsty”, or has discovered “drought” (see Fig. 1). Depending on which signal dominates, the 
agent tries to lower this pain. For instance, if the agent is thirsty, he can learn that drinking water 
will lower his primitive pain. However, when there is no more water, he cannot alleviate this pain. 
Therefore, the agent develops an abstract pain related to the lack of water. Once created, this pain 
centre will compete with other pains for attention, independently of the original primitive pain that 
was responsible for its creation. Thus, an abstract pain leads to a new learned motivation that may 
direct an agent to perform certain actions independently of the primitive pain. For example, an 
agent may not be thirsty, and yet, if there is no water, he will look for it whenever this abstract 
pain “lack of water” dominates. 
 Motivated by this new abstract pain, the agent needs to learn how to overcome it. It may find out 
that it can draw water from the well. Thus, it learns a new concept (the well) and is able to recognize 
the well as something related to its needs (specifically lack of water). It learns a new useful action 
“drawing the water from the well”, and it associates this action with the means to remove his abstract 
pain of not having water (its abstract goal). It also expects that, after performing this action (drawing 
water from the well), it will get water. This expectation will be useful for future action planning. At 
the same time, another higher-level pain (and motivation to remove this pain) develops related to the 
availability of drawing water from the well. Thus, if the well it was exploiting dries out, or the agent 
no longer can access this well, it may need to learn to overcome this pain, for instance by digging a 
new well. An alternative to this solution could be to maintain the proper level of the groundwater and 
this higher-level need may lead to the need for resource utilization planning by regional managers or 
policy makers. This process can be illustrated using Fig. 1.  
 The network of motivations can be expanded both vertically (towards a higher abstraction 
level) as well as horizontally (on the same abstraction level). For instance, rather than drawing 
water from the well, an agent may learn that it is easier to buy water. It develops an alternative 
way to accomplish this goal. This will lead to an understanding of a new concept (money) and new 
abilities (buying water). Related to this will be another abstract pain of not having enough money, 
and related means to get rid of this pain (like developing ecotourism, rising taxes, or providing 
services like digging a well). While some motivations may point to new higher-order motivations 
(like developing infrastructure to attract tourists), others may point to motivations previously 
developed both on a higher level (digging a well) or lower level (using a water reservoir for water 
recreation facilities). 
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Fig. 1 Creation of abstract pain signals. 

 
 
 Notice, that in the presented scheme, some goals may provide a circular path. For example, 
the need for the water reservoir was an abstract pain developed through the action of irrigating 
fields to remove the primitive pain signal related to drought. An abstract motivation resulting from 
the need for a water reservoir could be to earn money (to pay for the reservoir), while building 
tourists attractions may be a way to earn money, and finally building a new reservoir may be 
motivated by the need to develop tourist attractions. Thus, a learning network must be able to 
detect and avoid using such circular solutions. In the proposed motivated learning scheme, this is 
accomplished by blocking the circular goals through inhibitory, unsuccessful action neurons. 
 The machine is motivated by competing pain signals to act and to discover new ways of 
improving its interaction with the environment. By doing so, the machine not only learns complex 
relationships between concepts, resources and actions; it also learns limitations of its own 
embodiment, and effective ways of using and developing its motor abilities. The machine learns to 
associate its motivations with goals that lead to deliberate actions. It learns the meaning of 
concepts and objects, and relations among objects, learns to perform new actions and to expect 
results of actions. This builds up complex motivations and higher-level goals as well as the means 
of their implementation. Based on competing pain signals, the machine chooses which actions to 
execute to satisfy its goals and manages the goal priorities at any given time. 
 The motivated learning may provide a useful tool to support decision making, planning and 
management of water resources, as it develops a natural way of balancing various competing 
needs. Discovery of new ways to accomplish specific objectives gives the machine freedom to 
decide how to approach a given problem. Unlike other machine learning methods it does not 
follow a prescribed algorithm to optimize its decision, it does not require the environmental model 
but it is capable of building one, and it dynamically adjusts its actions to changes in the 
environment and its own perception of needs.  
 The most advanced machine learning method used so far in developmental robotics and 
autonomous systems control uses principles of reinforcement learning (RL) (Bakker & 



Water resource planning and management using motivated machine learning 
 

219

Schmidhuber, 2004). In the next section we compare motivated learning with reinforcement 
learning under identical environment conditions. 
 
 
COMPARISON BETWEEN ML AND RL APPROACHES  

We compared the performance of learning agents based on motivated learning and reinforcement 
learning principles in an identical environment that has many dependencies between its resources, as 
illustrated in Fig. 1. In our experimental set-up the agent has to operate in an environment where not 
all resources can be used from the very beginning of simulation. Instead, gradually more and more 
resources are available to the agent during the interaction with the environment. At the beginning of 
simulation the agent is able to learn only the basic dependencies between resources. It can also 
choose from a small set of actions. Additionally, it has a given a period of time before the 
environment increased in complexity introducing other resources and making new actions available.  
 The basic concept is that when the agent uses some resource, the amount of the resource 
decreases and in order to replenish it the agent has to choose and perform a proper action which may 
use another “higher-level” resource. Moreover, there are only small amounts of various resources, 
and while the agent consumes them, its pain signals Pp increase. The agent should learn which 
actions to perform in order to replenish the resource which is needed at this very moment. The 
following function describes the probability of finding resources in this experimental set-up:  

fci kci( )= e
−

kc

τc
 (1) 

where τc is the scaling factor that describes a resource declining rate, and kc the number of times a 
resource was used.  
 The environment’s state changes as a result of actions performed by the agent. As the agent 
uses up the resources from the environment, the resources are harder to find unless the agent learns 
how to restore them. The best strategy for an agent in such a situation is to learn about the 
environment when it is still simple.  
 Our aim in this study is to use this environment with gradually increasing complexity to 
examine the effectiveness of motivated learning (ML) and compare it with reinforcement learning 
(RL). The results are shown in Figs 2 and 3. Figure 2 shows the moving average of the pain signal 
value, PP, while Fig. 3 shows the ratio of the pain signal values in RL and ML as a function of the 
number of iterations.  
 
 

 
Fig. 2 Moving average of PP value as a function of number of iterations. 
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Fig. 3 RL/ML PP ratio in experiment with 14 competing goals. 

 
 
 As we can see, the ML-based agent was able to converge to a stable solution with low pain 
signals, Pp, while the RL-based agent cannot do that in this kind of environment. While initially 
RL was able to maintain the average pain level (even below that of ML), it gradually performed 
worse as the environment conditions deteriorated. As expected, learning is more effective with 
gradual use of new resources and skills in an increasingly complex environment. This follows 
intuition: initial environment simplicity should result in quicker learning because the learner’s 
efforts are not diffused by different possibilities. 
 
 
CONCLUSIONS 

This paper presents the motivated learning approach and its potential use in water resource 
planning and management. The proposed ML method shows how system development stimulates 
learning of new concepts and at the same time benefits from this learning. ML yields a machine 
learning system that may support monitoring and optimization of the system performance, while 
choosing an action to address the most pressing problems from many that may compete for the 
manager’s attention. It is expected that this natural learning will lead to more accurate models for 
water-related policies and actions, and through active interaction with human expertise will use the 
provided input data identifying factors that most contribute to water supply, use, contamination or 
policy-making decisions.  
 A case study of machine learning water management decisions is presented in this paper to 
demonstrate the application of EI in facilitating humans with modelling and water-related 
decision-making process.  
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