Influence of ecosystem on hydrochemistry and stable isotope of surface and groundwaters in the Yellow River Delta

FADONG LI¹, QIANG LIU¹, QIUYING ZHANG², JING LI¹, YAN ZHANG¹, SHUAI SONG¹, GUANGSHUAI ZHAO¹ & NONG ZHU¹

¹ Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
liufadong@igsnrr.ac.cn
² Center for Agricultural Resources Research, IGDB, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China

Abstract To determine the influence of the increased amount of transferred water on groundwater quality in the Yellow River Delta, 12 ground- and 11 surface-water samples derived from three ecosystems were collected for major ions (Na, K, Mg, Ca, NO₃, SO₄, Br, Cl, HCO₃) and stable isotope analysis (²H/¹⁸O). The land-use changes along the mainland towards the Bohai Sea from farmland to wetland to the coast. The hydrochemical compositions are most complicated in the farmland and wetland groundwater, indicating the mixing process with water transferred from the Yellow River, whereas the ones on the coast are dominated by NaCl. The ratios of ²H/¹⁸O in farmland and wetland groundwater are plotted on or close to the local meteoric water line (LMWL), and ones from the coast are enriched in both ²H and ¹⁸O (the seawater). The NO₃ positively corresponds with Cl in the farmland and wetland, with 40% of groundwater samples exceeding the allowable nitrate drinking water level (10 mg/L). Therefore, it is inferred that irrigation water from the Yellow River and anthropogenic pollution are two nitrogen sources of nitrate.

Key words Yellow River Delta; ecosystems; irrigation water; hydrochemistry; stable isotope