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Abstract The paper draws attention to the relevance of the predictive uncertainty in potential evapo-
transpiration (PET) calculations, towards improved surface water balance calculations in remote high-
elevation catchments. The study is in two Andean catchments in Bolivia; the first is in the headers of the 
Amazon basin and the second is in the headers of the Uyuni basin. The common feature at both sites is the 
high altitudinal gradient. A semi-distributed water balance model and a Monte Carlo-based sensitivity 
analysis are employed in the study. In general, for a given modelling condition, results show that the 
sensitivity of the water balance to an imperfect measuring network is likely to induce uncertainty ranges as 
high as 53 L-1 km2. In addition, results have shown that the water balance in Andean mountainous systems 
under arid conditions is likely to be more sensitive to variations in the PET than their humid counterparts. 
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INTRODUCTION 

An important advance in surface and subsurface hydrological research is the growing interest on 
assessing the final user’s degree of belief in the modelling products (Montanari et al., 2009), as a 
form to bridge the gap between research and practice. Following such a path, our concern is to 
draw attention to the practical relevance of the predictive uncertainty range in potential 
evapotranspiration calculations, towards improved surface water balance studies in remote high 
elevation mountainous catchments. In this paper, such practical relevance is measured in terms of 
catchment discharge, which is calculated using a semi-distributed surface water balance model. 
The methods involve the analysis of model outcomes produced by computational experiments 
designed and carried out under a Monte Carlo approach. The result from the analysis is the 
investigation of the model predictive uncertainty through the investigation of the global sensitivity 
of the model. 
 
STUDY AREA AND DATA 

The computational experiments are conducted for two remote poorly-gauged basins in the tropical 
Bolivian Andes, which develop along a spatially heterogeneous and high elevation region. The 
first catchment is located in the headwaters of the Amazon basin, whereas the second catchment is 
located in the headwaters of the Uyuni basin. The distance between both basins is approximately 
240 km; a common feature in both sites is the large difference in altitude between the headwaters 
and the catchment outlet. The former catchment was studied in Soria & Kazama (2011), whereas 
the latter uses unpublished data collected at a remote site where no comparable research has been 
carried before the current initiative.  
 The former catchment has an area of 1471 km2, with the headwaters located in the remote 
highlands of the Cordillera Real (15.8S to 16.3S), in a sub-basin of the Amazon River basin. The 
high elevation of the Cordillera determines variations in altitude of 5500 m a.m.s.l. within a 
horizontal distance of 50 km on average. Along the catchment, such high altitudinal gradient 
defines an equally enormous spatial heterogeneity, along landscapes with small glacier caps in the 
headwaters and tropical forests in the downstream area. Regarding the hydroclimatic network, 
eight stations situated between 4800 and 1196 m a.m.s.l. record the precipitation on a daily basis. 
Along the network, only two climatic stations record climatic variables for the calculation of 
evapotranspiration. No pan evaporation information is available. Two gauging stations record 
discharge on a daily basis. The precipitation is monitored by the local hydropower generation 
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company, COBEE-Bolivia. Climatic data is monitored by the National Meteorological and 
Hydrological Service, SENAMHI-Bolivia. In general, this basin is not under arid or semi-arid 
conditions (i.e. the annual average precipitation of 400 mm surpasses the annual average 
evapotranspiration of 141 mm). 
 To the south of the Cordillera Real is the second study site, downstream of the volcanic 
Andean Western Cordillera. In this mountain range and partially within the study catchment, 
resides the Sajama Volcano, the highest peak of the Andes in Bolivia (6542 m a.m.s.l.). This study 
site is located in Sajama National Park, on the headwaters of the Uyuni basin. The basin has an 
area of 568 km2. It is located 240 km to the south of the former study site, in a region where on an 
annual basis the climatic conditions are in general semi-arid, with an overall annual average 
precipitation of 350 mm and higher annual potential evapotranspiration values. The precipitation, 
as well as the climatic data for the calculation of the potential evapotranspiration, are recorded 
daily at the Sajama weather station (SENAMHI-Bolivia) at an elevation of 4255 m a.m.s.l., and at 
the Chungará station (Chile) at an elevation of 4563 m a.m.s.l. Given the remote conditions of the 
study site, for the estimation of altitudinal lapse rates, additional data available for a single 
hydrologic year (2011–2012) from the Comisario weather station (4340 m a.m.s.l.) was used, 
which is monitored by Agua Sustentable. No pan evaporation information is available. For the 
current and the former basins, topographic information is obtained from the SRTM DEM 
(Rodriguez et al., 2005). The land use and vegetation data are obtained from the Vegetation Map 
of Bolivia at scale 1:250 000 (Navarro & Ferreira, 2007). 
 
TOOLS AND METHODS 

Response surfaces (Beven, 2004) are employed to evaluate the outcomes of a semi-distributed 
surface water balance model. Such outcomes are generated through computational experiments 
designed under a Monte Carlo-based approach. The main features of the tools and methods are 
described below. 
 
Monthly semi-distributed water balance model 

The model is semi-distributed in 10 horizontal buckets for the site in the headers of the Amazon 
basin and four horizontal buckets for the site in the headers of the Uyuni basin. For both study 
sites the boundaries of the horizontal buckets are in general defined by contour levels at every 500 
m. The vertical buckets are composed by a surface layer which quantifies the response of the 
surface runoff, and two subsurface layers which quantify the response of the subsurface runoff; the 
sum of both contributions define the total monthly discharge at the outlet of the basin.  
 A saturation-excess runoff response is the basis of the perceptual model. The conceptual 
model is described in equation (1) (Collick et al., 2009), where S (L) is the soil water storage 
volume, t is time, ∆t is time step, P (L/T) is the measured monthly rainfall intensity, Rse (L/T) is 
saturation excess runoff rate, Perc (L/T) is percolation, and Ea (L/T) is the actual monthly 
evapotranspiration. The Ea is the monthly potential evapotranspiration PET multiplied by the 
number of rain days observed (raindays (days)). The PET is calculated from measured climatic 
variables under the FAO Penmann-Monteith method (Allen et al., 1998). The calculation of Rse 
and Perc is explained below. 

tPercEaRsePSS tttt ∆−−−+= ∆− )(  (1) 

 In the surface water balance model calculations, when P is higher in value than Ea, SE (L) 
which becomes either Rse or Perc, is calculated with equation (2) (Collick et al., 2009), where Csc 
(non-dimensional) is the threshold when surface runoff occurs. Csc is calculated as the difference 
between the maximum soil storage STmax (L) and the soil storage at wilting point Swilt (L). Cse (non-
dimensional) is a calibrated value (it is the only calibratable value) that decides the proportion of 
water that is converted into Perc (equation (3)) or Rse (equation (4)). When P is lower in value 
than Ea, the soil water depth above saturation SE is assumed to become zero. After Soria & 
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Kazama (2011), given the low sensitivity of the model to variations in Csc, that model factor is set 
to 0.2. The Swilt is inferred from the information provided in Navarro & Ferreira (2007); the STmax is 
assumed to be equal to the potential maximum retention after runoff begins, whose value is 
calculated through the SCS method for abstractions. The SCS method is explained elsewhere (e.g. 
Chow et al., 1994). The initial conditions for S is calculated from the product of STmax (L) by Csc, 
under the consideration that the effect of the initial conditions are likely to affect only the response 
at the initial time steps of the calculation. 

)SS(Csct)EaP(SS wiltmaxTtttt,E −−∆−+= ∆−     (2) 

tSCsePerc E ∆= /*  (3) 

tSCseRse E ∆−= /*)1(  (4) 

The contribution of Perc to the groundwater storage (SGW (L)) is calculated with equation (5). The 
contribution to groundwater flow over a unit of surface area (RGW (L/T)) is calculated with a linear 
reservoir model (equation (6)), where k (non-dimensional) is the recession constant calculated 
from a series of observed discharge. 

tRPercSS ttGWtttGWtGW ∆⋅−+= ∆−∆− )( ,,,  (5) 

teSR tk
ttGWtGW ∆−= −

∆− /)1(,,  (6) 
 
Numerical experiments, uncertain model parameters and uncertainty analysis  

The computational experiments are carried out under a Monte Carlo approach (Saltelli, 2000). 
Within that framework, first, the sample set of sensitive model factors is generated. The size of the 
sample is n and in our case the sample is generated under a Sobol scheme (Saltelli, 2000). Each set 
of model factors is fed into the water balance model, a number of n model runs are carried out and 
an equal number of model outcomes are generated. Before the latter mentioned step, the surface 
water balance model is calibrated using discharge measurements at the outlet of the two basins. In 
order to reduce the number of computational experiments, the surface water balance is calculated 
in two horizontal buckets for the two catchments studied. Finally, after having obtained the n, 
model outcomes are constructed as 2-D response surfaces of specific discharge (i.e. the response 
variable) vs model factor (i.e. the explanatory variable), for each model factor considered in the 
numerical experiments. For the interpretation of the response surfaces, the recommendation of 
Beven (2004) is adopted; he points out that a model parameter that dominates the response of the 
system, is likely to have plots whose trends follow identifiable patterns. Even though the sample 
set for the Monte Carlo experiments is generated under the Sobol sampling scheme for first and 
second order sensitivity indices calculations (Saltelli, 2000), the investigation presented here only 
analyses the model outcomes through response surfaces; the analysis through sensitivity indices 
will be carried out in a future publication. The aspects considered in the computational 
experiments at each study site are detailed below. 
 For the catchment in the headwaters of the Amazon basin, Soria & Kazama (2011) carried out 
Monte Carlo experiments for the period from September 1981 to August 1982 (n = 2048). The 
model parameters considered to be uncertain were Csc, STmax, Swilt and Cse. In addition, in order to 
assess the predictive performance of the water balance model under an imperfect measuring 
network, the observed P, PET, and raindays were also assumed to be uncertain. The assumption of 
input data as uncertain information may serve in the assessment of the impacts of changes in 
climatic conditions; however, considering the complexity of such an affirmation, the results were 
not strictly analysed from such a perspective. In reference to the probabilistic distribution 
considered, ignorance was assumed on the model predictive response. As a consequence the 
behaviour of the uncertain variables was explained by uniform probabilistic distribution functions. 
Having a heterogeneous study basin, the assessment was carried on two representative buckets: Z1 
(rainforest) and Z9 (sparse vegetation, shallow soil depths; downstream of the glacierized bucket).  
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 For the numerical experiments, uncertainty bounds were assumed to fall within a range ±20% 
in reference to calibrated and observed values. In the current paper, given the experience gained 
under the usage of the water balance model, the number of relevant (i.e. sensitive) factors are 
reduced to three: Cse, P, PET, and the results initially presented in Soria & Kazama (2011) are 
enhanced under the same scheme by increasing the number of replications to n = 4096. 
 For the design of the numerical experiments at the catchment in the headwaters of the Uyuni 
basin, the same considerations mentioned in the paragraph above are adopted. The number of 
sensitive factors are also three: Cse, P and PET; n = 4096; the uncertainty range is ±20%. Model 
factors are also assumed to be uniformly distributed. The Monte Carlo experiments are carried out 
over the period March 2005–January 2006, which is when the highest precipitation rates were 
measured within the entire recording period. Also, with the objective to increase and contrast the 
water balance model responses, the assessment on this catchment is carried out for the downstream 
most horizontal bucket R1 (a non-arid bucket surrounded by Andean wetlands) and the high 
elevation horizontal bucket R3 (downstream of the glacierized bucket). 
 At both study sites, the investigation of the model predictive uncertainty is carried out for the 
wettest observations (January 1982 and January 2006). The wettest month is assumed to be a 
relevant uncertainty indicator of the model performance, because during such wet periods strong 
relationships between model response and hydroclimatic conditions are likely to occur (Yapo et 
al., 1996). Table 1 summarizes the calibrated and observed values considered in the experiments. 

 
Table 1 Calibrated and observed values for the model parameters (wettest observation). Z1 and Z9 are 
horizontal buckets that belong to the catchment in the headers of the Amazon basin; R1 and R3 are in the 
headers of the Uyuni basin. Swilt, Csc, STmáx, Cse are model factors; P, PET, raindays are model inputs. 
Altitudinal range of the 
horizontal bucket (m a.m.s.l.) 

Calibrated values Observed values 

Catchment 1 (In the headers of 
the Amazon basin) 

Swilt 
(mm) 

Csc STmáx 
(mm) 

Cse 
 

P 
(mm) 

PET 
(mm) 

raindays 
(days) 

Z1: 500–1000 10.0 0.2 100.0 0.2 610.0 141.0 30.0 
Z9: 4001–4500 5.0 0.2 40.0 0.8 247.0 141.0 10.0 
Catchment 2 (In the headers of 
the Uyuni basin) 

Swilt 
(mm) 

Csc STmáx 
(mm) 

Cse 
 

P 
(mm) 

PET 
(mm) 

raindays 
(days) 

R1: 4120–4340 41.0 0.2 51.0 0.2 211.5 235.9 23.0 
R3: 4500–5000 30.0 0.2 149.0 0.8 211.5 146.8 23.0 

 
RESULTS 

According to the outcomes of the numerical experiments summarized in the response surfaces of 
Fig. 1, the uncertainty range originated in an imperfect measuring network varies according to the 
system being modelled. In addition to this aspect, which was expected as we carried out a water 
balance study in high elevation-mountainous catchments, the outcomes from the Monte Carlo 
computational experiments provide an insight to the imperfect knowledge we have regarding the 
relevance of the uncertainty contained in the estimations of model inputs, towards the assessment 
of the water balance predictive uncertainty range.  
 When comparing the response surfaces of the uppermost buckets modelled, results have shown 
that their trends and tendencies are similar (R3 and Z9 in Fig. 1), with patterns of the factor P that 
appear to be as well defined (identifiable) as the patterns drawn by the plots of PET and Cse; 
however, the differences arise when their respective uncertainty ranges are compared, which are 
shorter for P compared to the respective ranges calculated for PET and the model factor driving the 
model response Cse. In practice, our assumed ignorance of the system response, implicitly 
represented through the uncertainty range, originated in an imperfect inference of the factor PET, 
suggests an implied uncertainty range of 37 L/s/km2 on average, measured in terms of catchment 
specific discharge in the two basins investigated. In addition, results suggest that an imperfect 
knowledge of factor P implies an uncertainty range from 32 to 20 L/s/km2 in terms of specific  
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Fig. 1 Comparison between response surfaces in horizontal buckets for the catchment situated in the 
headers of the Uyuni basin (R3 and R1) and the catchment situated in the headers of the Amazon basin 
(Z9 and Z1). The sample size is n = 4096. The horizontal axis shows the uncertainty range for the 
explanatory variables; the response variable is represented in the vertical axis. The graphs are ordered 
in a sequence that emphasizes the variability of the model responses with the altitude. The graph aims 
to demonstrate that in general, the more humid the conditions (Z1), the lower the relevancy of the PET 
(i.e. the shape of the PET patterns would draw a trend that is less defined, which means that the 
parameter is unlikely to become a dominant factor of the system). In contrast, it is also aimed at 
demonstrating that the more arid the conditions (Z9, R1, and eventually R3), the highest the 
identifiability and adequacy of PET to predict the behaviour of the response variable in the water 
balance model. 
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calculated discharge in buckets R3 and the Z9, respectively. Such a comparison suggests that 
given the identifiable patterns and the small uncertainty range found in the P response surface, the 
model structure proposed to represent the surface water balance is adequately described by the 
response of factor P.  
 As the catchments develop in the downstream direction and the humidity of the system 
increases, the patterns tend to differ. In the site in the headwaters of the Amazon basin, the 
identifiability of PET and Cse decreases notably, suggesting that its adequacy to describe the 
response variable also decreases; simultaneously, the identifiability of P remains high, suggesting 
that its relevance on the description of the response variable remains as good as the one observed in 
buckets R3 and Z9. In the case of the latter mentioned variable, the width of the uncertainty range 
remains relatively short (20 L/s/km2). In contrast, in the bucket of the basin in the headwaters of the 
Uyuni basin the aridity increases (i.e. the mean values of the PET surpass the mean values of P, 
Fig. 1), and the identifiability of the PET appears to be as equally relevant as the identifiability in P, 
suggesting an equally high adequacy of both factors for the explanation of the response variable.  
 
CONCLUSIONS 

After comparing the water balance results obtained for the horizontal buckets studied, our 
computational experiments suggest that: (i) in general, for a given modelling condition, the 
sensitivity of the water balance to an imperfect measuring network in mountainous Andean 
catchments with high altitudinal gradients is likely to induce uncertainty ranges as high as 53 L/s/km2 
(Fig. 1, bucket Z1). Our results also suggest that (ii) Andean mountainous systems under arid 
conditions are likely to be more sensitive to variations in the PET than their humid counterparts. The 
conclusions are accomplished after comparing the response surfaces of the buckets Z9 and Z1, and 
can be confirmed after comparing the results from the computational experiments carried out in 
buckets R3 and R1; notice that in Z1 there is no deficit in the surface water balance and the 
component that dominates the response of the system is P, but as the altitude increases, in Z9 the 
system gradually reaches an state where P decreases and the PET rates are similar in magnitude to 
the former. Among the recommendations, our results suggest to water balance modellers that they 
pay particular attention to the establishment of a measuring network that collects data at different 
altitudes (including gauging stations), in order to reduce the resulting predictive uncertainty range. 
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