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Abstract Artificial neural network (ANN) models have been developed for simulation of daily suspended 
sediment flux in the Subansiri River basin, which is a transboundary eastern Himalayan basin and the 
biggest sub-basin of the Brahmaputra River in India. Modelling was conducted on two datasets: (1) daily 
discharge and suspended sediment concentration data of 15 years (1993–2007) and (2) daily data of climate 
(rainfall, temperature) and snow cover area along with discharge and suspended sediment concentration for 
six years (2001, 2003–2007). The performance of ANN models has been compared with conventional 
sediment rating curves (SRC) and multiple linear regression models (MLR) having similar input data. ANN 
models were found to be considerably better than the SRC and MLR models. This paper concludes by 
providing discussion about how the different type of input data, length of input data and lagging of input 
data affects the accuracy of sediment flux estimation in a large Himalayan River basin and also provides 
guidance on the types of tasks for which different types of input data may be preferable. 
Key words suspended sediment flux; artificial neural networks; multiple linear regression; Himalaya;  
Brahmaputra River; Subansiri River; India 
 
INTRODUCTION 

Rigorous assessment of sediment fluxes in rivers is required in a wide spectrum of problems such 
as design of reservoirs and dams; hydroelectric power generation and water supply; water quality 
and pollution and environmental impact assessment (Singh et al., 1998). Himalayan rivers 
transport sediment at a very high rate and in the Himalayan and Tibetan region, they supply about 
25% of the dissolved load to the world oceans (Raymo & Ruddiman, 1992). Among Himalayan 
rivers, the Brahmaputra is a major international river, ranking second in the world with respect to 
sediment load (Rao, 1984). The Brahmaputra flows across four countries, including India. Within 
India, the Subansiri River is the biggest tributary of Brahmaputra and it has tremendous potential 
for hydropower (22 projects having potential of 15 191 MW already proposed/in progress). 
Therefore, accurate estimation of sediment fluxes of the river is of vital importance for the design 
and management of water resources projects. In the past few decades, great strides have been made 
in conceptualizing the process of runoff generation and sediment yield/flux from catchments 
through varying modelling approaches (Flaxman, 1972; Walling, 1983; Wicks & Bathurst, 1996; 
Van Oost et al., 2000; Verstraeten et al., 2003). Models are classified according to their degree of 
representation of the physical processes involved in abstraction of the real sediment flux 
phenomenon. They are classified as physically-based distributed models, conceptual models, 
empirical models and black-box models in a decreasing degree of representation and increasing 
degree of application simplicity.  
 The physically-based distributed models attempt to represent the spatial heterogeneity of 
variables by dividing the catchment into grids and describe the processes of the sediment transport 
from grid to grid with simplified partial differential equations (Wicks & Bathurst, 1996). These 
models can provide satisfactory simulation and prediction for small and heavily instrumented 
catchments (<100 km2). However, their applications at regional and larger scales are unrealistic 
because the quantity and quality of necessary input data are usually insufficient. Lumped 
conceptual models are favoured in terms of their limited data requirements and inclusion of a 
conceptual framework. However, lumped conceptual models also require a lengthy calibration and 
parameterization process. Empirical models estimate suspended sediment flux by relating it to 
catchment characteristics such as drainage area, topography, land cover and climate (Walling, 
1983). They are widely used because of their relatively simple structure and ability to work with 
limited input data. However, empirical models are unable to represent the spatial variability of 



Suspended sediment flux modelling in a transboundary Himalayan river basin 
 

287 

hydrological processes and catchment parameters that influence the suspended sediment flux in a 
river. Black-box models in the form of regression models can simulate the highly nonlinear 
suspended sediment flux with limited accuracy, due to their simple model structure and underlying 
distribution assumptions. In this context, use of soft computing techniques offers an alternative 
modelling approach. 
 In recent years, artificial neural network (ANN) models have attracted researchers in 
hydrology and water resources (ASCE, 2000) since they are capable of approximating any 
arbitrary continuous function, simulating a nonlinear system without a priori assumption of 
processes involved, and giving a good solution even when input data are incomplete or ambiguous. 
The application of the ANN approach for modelling sediment flux is very recent and has already 
produced encouraging results. Jain (2001) applied ANN to establish an integrated stage–
discharge–sediment concentration relation for two sites on the Mississippi River. Tayfur (2002) 
used ANN to simulate experimentally observed sediment fluxes from different slopes under 
various rainfall intensities. Kisi (2004) used ANN to simulate daily suspended sediment 
concentration at two stations on the Tongue River in Montana, USA. Sarkar (2005) and Sarkar et 
al. (2008, 2010) applied the ANN technique to model the sediment–discharge relationship of 
Satluj River of western Himalaya in India, Kosi River of the Ganges River system in northern 
India, and Pranhita River of the Godavari River system in southern India. The above studies 
demonstrate that the modelling of sediment, including its concentration in a river and flux from a 
slope or a watershed, is possible through the use of ANN. A common approach adopted was that 
discharge and suspended sediment flux at previous time steps were used as inputs. Although it 
may increase the accuracy of the simulation, ANNs established by this method are unable to 
explain the contribution from climatic variables. Therefore, in the study presented in this paper, 
instead of using only discharge and suspended sediment concentration as inputs, we relate the 
suspended sediment flux to the original driving forces (i.e. rainfall and temperature) to develop an 
ANN model that can be used to explore the relationships between climate inputs and sediment 
responses.  
 This paper presents development of an ANN model based on daily sediment flux simulation 
models for the Subansiri basin up to Chouldhuaghat gauging site. The advantages of ANN models 
have been evaluated by comparing its performance with that of conventional sediment rating 
curves (SRC) and multiple linear regression (MLR) models. Two types of daily ANN models have 
been developed, one with a longer length of input data (15 years) consisting of only discharge and 
suspended sediment concentration; and a second with shorter length input data (6 years) of the 
original driving forces, i.e. rainfall and temperature along with data of snow cover area in the 
catchment and water discharge. For comparison, RCs having data similar to the first type of ANN 
models and MLR models having data similar to second type of ANN models have been developed.  

 
METHODS 
Study area and data availability 
The study area is located in the Subansiri River basin (Fig. 1). The Subansiri River is the biggest 
north bank tributary of the Brahmaputra River in India. It originates in Tibet beyond the Great 
Himalayan Range at an altitude of around 5340 m and joins the Brahmaputra in the plains of 
Assam State in India. The region of Subansiri basin has three distinct parts: (1) the great 
Himalayan range, (2) the Sub-Himalayas, and (3) fertile plains of Assam. In the mountainous 
terrain, the river has a total length of about 208 km and falls from 4206 to 80 m a.s.l. near 
Dulangmukh in the foothills. As it flows across the central Himalaya to the Arunachal foothills, 
the Subansiri receives discharge from numerous streams. The total length of known and well-
defined tributaries of Subansiri is 1960 km. The Subansiri River contributes about 10.7% of the 
total discharge of the Brahmaputra at Pandu near Guwahati in India. The catchment area of 
Subansiri basin up to the outlet at Chouldhuaghat is approx. 26 419 km2 from SRTM data, of 
which about 10 237 km2 (38.75%) lies in Tibet and the remaining 61.25% in India. 
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 The Sub-Himalayan range of Subansiri generally consists of soft sandstones and weathered 
rocks. During the period May to October, the intensity of precipitation is high and sediment is 
deposited in areas nearer to and along the foot hills are easily eroded. Daily suspended sediment 
(SS g/L) and discharge (Q m3/s) data were available at the Choulduaghat gauging site for the 
period 1993–2007. However, meteorological data were available only after the year 2000, in the 
form of daily observed rainfall in the Indian part of basin at Gerukamukh and Daporizo raingauge 
stations (RG and RD, mm); daily gridded rainfall data from APHRODITE (Yatagai, 2009) at  
0.25° × 0.25° for the Tibetan part of basin at three grids (R1, R2 and R3, mm); daily observed 
temperature at Gerukamukh station (T°C) and daily snowcover area as a percentage of total basin 
area (SCA1 up to an elevation of 4800 m, and SCA2 for elevations >4800 m) computed from 
MODIS data. MODIS snow data (Riggs et al., 2007) are Aqua/Terra satellite data products 
available from February 2000 to the present date. In the present research, MOD10A2 8-day 
composite snow data products at a resolution of 500 m were used to estimate the snow cover in 
Subansiri basin. The details of snow cover area estimation are given in Sarkar et al. (2010).  

 

 
Fig. 1 Index map of the study area. 

 
Selection of input/output data variables 

The input/output variables for the two types of ANN models that use data with different periods of 
record (15 vs 6 years of data) were designed separately. 
 The ANN models for 15 years of data consist of daily Q (m3/s) and S (mg/L) at 
Chouldhuaghat site for 1993 to 2007 which gave a total of 5478 patterns (data sets). Out of this, 
nine years (1993–2001) consisting of 3287 patterns were used for training, three years (2002–
2004) consisting of 1096 patterns for validation and three years (2005–2007) consisting of 1095 
patterns for cross-validation. Various combinations of input data (considering lagged inputs) used 
for training of ANN models are given in Table 1.  
 The ANN models with six years (2001, 2003–2007) of daily rainfall data at RG, RD, R1, R2 
and R3; daily mean temperature T and daily snowcover area as SCA1 and SCA2 comprised 2191 
patterns (data sets). Out of this, four years (2001, 2005–2007) consisting of 1460 patterns were 
used for training, one year (2003) consisting of 366 patterns for validation and one year (2004) 
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consisting of 365 patterns for cross-validation. Various combinations of input data were 
considered in three groups, viz, Group I: A simple model was selected by representing suspended 
sediment concentration at the present time, t, as a function of rainfall and mean temperature at time 
t; Group II: The snow cover area and discharge at the present time, t, were added as additional 
input variables to the model of Group I; Group III: The suspended sediment concentration at the 
previous time step, t – 1 was added as an additional input variable to the model of Group II. Within 
these three groups of ANN models, three models each were considered: (i) with input variables at 
current time, t; (ii) with input variables at the previous time step, (t – 1) in addition to (i); and (iii) 
with input variables at two time steps earlier, (t – 2) in addition to (ii). However, in the last group 
of models, the first sub-group already has the suspended sediment concentration at t – 1. The 
various ANN models considered for training are given in Table 1.  
 Models with different lengths of data were designed to evaluate the effect of data length on 
model accuracy. Models in different groups were designed to compare the performance of 
different sets of input variables, while those in the same group were designed to assess the degree 
of lag-effect between the inputs and outputs through addition of lagged data, one by one.  
 
Table 1 Input/ouput variables of ANN models. 
ANN 
model 

No. input 
variables 

Input variables Output 
variable 

ANN models with 15 years data 
ANN15-1 1 Qt S t 
ANN15-2 3 Qt,  Qt-1,  St-1 S t 
ANN15-3 5 Qt,  Qt-1,  Qt-2,  St-1, St-2 S t 
ANN15-4 7 Qt,  Qt-1,  Qt-2, Qt-3,  St-1,  St-2, St-3 S t 
ANN15-5 9 Qt,  Qt-1,  Qt-2, Qt-3, Qt-4,  St-1,  St-2,  St-3, St-4 S t 
ANN models with 6 years data 
Group I:Input variables with rainfall and mean temperature only 
ANN6-1 6 RGt , RDt , R1t , R2t , R3t , Tt ,  S

t
 

ANN6-2 12 RGt, RDt,  R1t, R2t, R3t,  RGt-1,  RDt-1,  R1t-1,  R2t-1,  R3t-1,  Tt,  Tt-1 S
t
 

ANN6-3 18 RGt, RDt,  R1t, R2t, R3t,  RGt-1,  RDt-1,  R1t-1,  R2t-1,  R3t-1,  RGt-2, 
RDt-2,   R1t-2,  R2t-2,  R3t-2, Tt,  Tt-1,  Tt-2 

S
t
 

Group II: Input variables with rainfall, mean temperature, snow cover area and runoff (discharge)  
ANN6-4 9 RGt , RDt , R2t , R5t , R6t , Tt , SCA1t , SCA2t , Qt

 S
t
 

ANN6-5 18 RGt, RDt,  R1t, R2t, R3t,  RGt-1,  RDt-1,  R1t-1,  R2t-1,  R3t-1,  Tt,  Tt-1,  
SCA1t,  SCA2t,  SCA1t-1, SCA2t-1, Qt

, Q
t-1

 
S

t
 

ANN6-6 27 RGt, RDt,  R1t, R2t, R3t,  RGt-1,  RDt-1,  R1t-1,  R2t-1,  R3t-1,  RGt-2, 
RDt-2,   R1t-2,  R2t-2,  R3t-2, Tt,  Tt-1,  Tt-2, SCA1t,  SCA2t,  SCA1t-1, 
SCA2t-1,  SCA1t-2, SCA2t-2, Qt

, Q
t-1

, Q
t-2

 

S
t
 

Group III: Input variables with rainfall, mean temperature, snow cover area and runoff (discharge) 
ANN6-7 10 RGt , RDt , R1t , R2t , R3t , Tt , SCA1t , SCA2t , Qt

, S
t-1

 S
t
 

ANN6-8 19 RGt, RDt,  R1t, R2t, R3t,  RGt-1,  RDt-1,  R1t-1,  R2t-1,  R3t-1,  Tt,  Tt-1,  
SCA1t,  SCA2t,  SCA1t-1, SCA2t-1, Qt

, Q
t-1

, S
t-1

  
S

t
 

ANN6-9 29 RGt, RDt,  R1t, R2t, R3t,  RGt-1,  RDt-1,  R1t-1,  R2t-1,  R3t-1,  RGt-2, 
RDt-2,   R1t-2,  R2t-2,  R3t-2, Tt,  Tt-1,  Tt-2, SCA1t,  SCA2t,  SCA1t-1, 
SCA2t-1,  SCA1t-2, SCA2t-2, Qt

, Q
t-1

, Q
t-2

, S
t-1

, S
t-2

 

S
t
 

 
TRAINING OF ANN MODELS  

The process of determining ANN weights is called learning or training and it is similar to 
calibration of a conceptual/mathematical model. The ANN package Neural Power (2003) was used 
for ANN model development, training as well as testing. The structure for all simulation models 
was a three layer back-propagation ANN which utilizes a non-linear sigmoid activation function 
uniformly between the layers. Nodes in the input layer were equal to the number of input 
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variables, nodes in the hidden layer were varied from the number of input nodes to approximately 
double the input nodes (Zhu et al., 1994) and the nodes in the output layer was one as the models 
provide single output.  
 The modelling of ANN initiated with the normalization (re-scaling) of all inputs and output 
with the maximum value of the respective variable, reducing the data to the range 0 to 1 and 0.1 to 
0.9, respectively, to avoid any saturation effect that may be caused by the use of a sigmoid 
function. All interconnecting links between nodes of successive layers were assigned random 
values called weights. Constant values of 0.15 and 0.75, respectively, were considered for the 
learning rate α and momentum term β, selected by trial and error. A quick propagation (QP) 
learning algorithm was used, which is a heuristic modification of the standard back propagation 
and is very fast (NeuralPower, 2003). The criterion selected to avoid over training was 
generalization of the ANN through cross-validation (Haykin, 1994). Training data were used for 
estimation of weights of the ANN model and validation data for evaluation of the performance of 
the ANN model during training. Training was stopped when the error for the validation dataset 
started increasing. In this way, the training and validation datasets were used to assess the 
performance of various candidate model structures, and thereby choose the best one. The ANN 
model with the best performing parameter values was chosen and the generalized performance of 
the resulting network was measured on the cross-validation data set to which it had never before 
been exposed. 
 
RESULTS AND DISCUSSION 

Performance indices of the various daily ANN models developed based upon the input data 
structure are presented in Table 1. The SRC and MLR are presented in Table 2. SRC has 
input/output variables similar to ANN15-1. MLR models in each group have input/output 
variables similar to the best performing ANN model in that group. Statistical criteria, namely the 
root mean square error (RMSE), correlation coefficient (R) and determination coefficient (DC) 
were used to evaluate the performance of the models. The criterion for selection of the best model 
in different groups was based on the performance of the various models in validation and cross-
validation phases.  
 Among the 15 year data ANN models, ANN15-3, which consisted of two antecedent 
discharges and two antecedent sediment concentrations in input, had the best overall performance 
(Table 2). The RMSE value of ANN15-32 is slightly higher during training compared to ANN 
models based on more input data, but is lowest during validation and cross-validation phases, 
which indicates a better generalization capability of the model.  
 Among ANN models based on six years of data, Group I models based only on rainfall and 
mean temperature show relatively poor performances (Table 2). The best performing model in this 
group is ANN6-2, with the lowest RMSE and highest R & DC in the validation as well as cross-
validation phases. ANN6-2 model has 12 input variables comprising five rainfall values and one 
mean temperature value of the current day as well as the previous day. It is evident from Table 1 
that with the addition of one previous day’s data in the input variables, the model performance 
improves.  
 However, with addition of another lagged input variable set, i.e. previous two day data, model 
performance declines. In Group II models, the best performing model is ANN6-4 with nine input 
variables comprised of five rainfall data, one mean temperature data, two snow cover area data and 
one discharge data, all for the current day. Group II models do not exhibit any improvement of 
model performance with addition of lagged input variables. It is observed that all the Group II 
models show an improved performance over the corresponding (with respect to data lagging) 
models in Group I. Looking at the performance of Group III models, it can be seen that there is a 
dramatic improvement in the performance of all the models of this group compared to Groups I 
and II. In Group III models, the best performing model is ANN6-7 with 10 input variables 
comprising of five rainfall data, one mean temperature data, two snow cover area data, one 
discharge data, all of current day and one suspended sediment concentration data of previous day.  
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Table 2 Comparative performance of various ANN models and SRC/MLR models. 
Model Training Validation Cross-Validation 

RMSE  R DC RMSE  R DC RMSE  R DC 
ANN models with 15 years data 
ANN15-1 157.60 0.633 0.400 117.62 0.631 0.286 126.98 0.601 –6.07 
ANN15-2 60.604 0.955 0.911 52.545 0.928 0.858 8.347 0.985 0.969 
ANN15-3 59.455 0.956 0.915 50.450 0.933 0.869 9.234 0.982 0.964 
ANN15-4 53.895 0.964 0.930 50.493 0.935 0.869 12.692 0.982 0.929 
ANN15-5 51.826 0.968 0.935 50.521 0.934 0.869 9.556 0.981 0.930 
SRC 164.26 0.631 0.349 588.69 0.637 –16. 9 624.88 0.602 –170.2 
ANN models with 6 years data 
Group I: Models with only rainfall and mean temperature as input 
ANN6-1  65.852 0.618 0.381 66.361 0.784 0.524 57.124 0.737 0.515 
ANN6-2  63.271 0.655 0.429 62.353 0.787 0.582 54.588 0.765 0.556 
ANN6-3  60.894 0.687 0.547 64.267 0.785 0.552 56.497 0.751 0.526 
MLR6-I 66.243  0.611  0.373  66.403 0.741  0.521  57.899 0.731 0.501 
Group II: Models with rainfall, mean temperature, snow cover area and discharge as input 
ANN6-4  56.39 0.748 0.550 55.709 0.855 0.664 47.221 0.829 0.666 
ANN6-5  56.61 0.737 0.543 58.129 0.805 0.636 47.896 0.813 0.659 
ANN6-6  55.76 0.746 0.556 56.394 0.818 0.657 47.654 0.807 0.660 
MLR6-II 63.645  0.649  0.422  56.439 0.815  0.658  52.506 0.770  0.590  
Group III: Models with rainfall, mean temperature, snow cover area, discharge and previous day sediment 
concentration as input 
ANN6-7  19.861 0.971 0.944 23.000 0.975 0.948 16.988 0.984 0.968 
ANN6-8  19.293 0.973 0.947 23.717 0.972 0.939 18.593 0.977 0.949 
ANN6-9  19.035 0.974 0.948 24.787 0.969 0.934 18.810 0.976 0.948 
MLR6-III 21.181  0.967  0.936  23.743 0.971  0.943  17.729 0.979  0.957  

 
Group III models also do not exhibit any improvement of model performance with addition of 
more lagged input variables. Through comparison of SRC and MLR model performance with 
corresponding ANN models (Table 2), it can be seen that both SRC and MLR models perform less 
well than ANN models in all the three phases.  
 A comparison of the time series of observed suspended sediment flux and model simulated 
sediment flux based on ANN models namely, ANN6-2, ANN6-4, ANN6-7, ANN15-2 with 
corresponding MLR/SRC models during all three phases except training phase of ANN15-2 are 
presented in Fig. 2 (units of sediment data have been omitted because of data secrecy issues). The 
figure shows that suspended sediment flux time series generated using ANN models are closer to 
the observed series compared to the corresponding MLR/SRC model series, especially for the peak 
and low flows. The MLR models of Group I and II estimate negative suspended sediment flux 
values when there is no rainfall/low runoff during the periods selected in the input model structure.  
 The most important issue in sediment flux modelling is selection of input variables which play 
an important role in determining the accuracy of the developed models. Rainfall and temperature 
were selected because they are closely correlated with the sediment flux and can be used to 
represent the influence of climate. While rainfall is the main driving force of sediment flux, the 
close relationship between temperature and sediment flux may be a result of two mechanisms. 
First, about 30% of the study area lies in cold arid deserts of the Tibetan Plateau where the average 
annual potential evaporation is generally higher than that of the annual rainfall, and temperature,  
to some degree, affects the potential evaporation. Second, temperature is an index of soil moisture, 
which significantly affects soil erosion processes and resultant sediment supply to rivers. The 
inclusion of discharge has improved the performance of ANN models because of the close 
relationship between suspended sediment flux and discharge. Inclusion of antecedent sediment 
flux has further enhanced the performance of the models. The results show that selection of input 
variables also overcomes the limitation of data length. ANN model, ANN6-7, with six years data  
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       (a) ANN6-2: Only R & T input                            (b) ANN6-4: R, T, SCA & Q input 
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       (c) ANN6-7: R, T, SCA, Q & St-1 input                   (d) ANN15-2: Q & St-1 input     

Fig. 2 Comparative performance of observed and simulated sediment flux series. 
 

performs much better than model ANN15-2 with 15 years data, because the previous model has 
rainfall, mean temperature and snowcover data in addition to discharge and previous day 
suspended sediment concentration data. 
 Among the various groups of ANN models, Group I models have the lowest data requirement 
and relatively simple structure. However, their accuracy is lower than the others. Group II ANNs 
have higher accuracy than Group I ANNs because snowcover area and discharge are used as 
additional inputs; however, such models cannot be used to predict sediment flux directly from the 
climate input. Therefore, in ungauged catchments, one extra step is required to predict the 
discharge before the sediment flux can be predicted. The error may become cumulative in such a 
case and final accuracy may be lower than those of the present ANNs with observed discharge 
data as input. Group III ANNs have much higher accuracy than the Group II ANNs. This type of 
ANN actually estimates the difference between values of the dependent variable at current and 
previous time steps thereby making them suitable for applications focusing on the status of water 
or sediment. Even with more accurate results, such models do not provide any information about 
the contribution of driving forces, such as climate.  
 The lag effect of input variables is another issue that should be taken into account in 
developing ANN models. The best performing ANN in Group I is the one with input data of the 
current day and previous one day, suggesting that a 1-day lag-effect exists between the climate 
inputs and sediment flux. In Group II, when R, T, SCA and Q are used as inputs, the current time 
information is good enough for the estimation of the sediment flux, reflecting the strong influence 
of Q without lag time. The degree to which the input information from previous time steps should 
be involved can be decided from the physical relationship between the inputs and the output. 
When the inputs are directly or closely related to the output, no or only a shorter lag effect should 
be considered. In other cases a longer lag effect may be required, as for rainfall and temperature.  
 
CONCLUDING REMARKS 

The suspended sediment flux modelling in the transboundary Subansiri basin of the Himalayas is 
necessary for development and management of the upcoming water resources projects in the 
catchment. In this study, the ANN methodology was applied to simulate the daily suspended 
sediment flux of the catchment using different lengths of data and different types of input data. 
The results of the ANN models were compared with conventional SRC as well as MLR models. 
Although ANNs showed better performance in estimating sediment flux with a large magnitude, 
especially for records higher than 200 compared to MLRs and SRC, in general they showed weak 
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robustness in estimating sediment flux with a large magnitude. Such limitations in the application 
of ANNs are commonly attributable to scarcity of large observed values in the training dataset. In 
other words, this inefficiency can be attributed to different non-linear relationships governing the 
process of sediment detachment and final sediment flux generated from a catchment. For example, 
the mechanism of sediment flux generation induced by a low flow event is obviously different 
from the sediment flux produced by a storm event in which a significant amount of wash load 
enters the catchment drainage network and passes the outlet. Therefore, due to different 
mechanisms, a single ANN, which may produce satisfactory results for the simulation of medium 
and low fluxes, may not simulate large sediment flux events with the same accuracy. In the present 
data set, there were inadequate data corresponding to high sediment flux events to train a separate 
ANN model for simulating these high values. Therefore, more input data would enhance the 
accuracy of ANN models for a large basin. 
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