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Abstract Impacts of long-term stochastic inflow predictions (SIPs) and their uncertainties on reservoir 
operation for water supply under drought situations are analysed and discussed in this study. Multiple sets of 
SIPs are pseudo-randomly generated with five-day resolution for three months, arbitrarily changing the two 
kinds of prediction’s uncertainty, namely reliability and discrimination, for a comprehensive analysis of the 
impact of the SIP. Monte Carlo simulations of long-term reservoir operation for water supply under drought 
situations are then conducted considering generated multiple SIPs with various uncertainties. The proposed 
analysing method was applied to an assumed reservoir whose data was derived from Sameura Reservoir in 
Japan, demonstrating expected impacts of SIPs and their uncertainties on the long-term reservoir operation, 
and giving a suggestion as to what type of uncertainty in SIP is more important in real-time reservoir 
operation for more effective drought management. 
Key words stochastic inflow prediction; reservoir operation; drought management; impact analysis; uncertainty; 
reliability; discrimination; Monte Carlo simulation 
 
INTRODUCTION 

Reservoirs play an important role in drought management by adjusting river waters so as to resolve 
mismatches between natural water supply and water demand downstream. Efficient reservoir 
operation with consideration of hydrological conditions expected in the target river basin during 
oncoming months is therefore crucially needed for effective drought management.  
 As information on future hydrological conditions, long-term stochastic predictions of 
hydrological variables such as precipitation or inflow to reservoirs for the coming several months 
have been provided by meteorological or hydrological authorities. Krzystofowicz (2001) remarked 
on four advantages of considering stochastic hydrological forecasts in that they are scientifically 
more honest; enable risk-based warnings of water disasters like floods; enable rational decision 
making; and offer additional economic benefits in light of his analysis. Long-term stochastic 
predictions on hydrological variables for the coming several months are also useful to be taken into 
consideration in decision making for long-term reservoir operation as they include not only the 
expected value, but also information on uncertainty contained in the predictions with stochastic 
representation, which is also considered important when reservoir managers decide on the operation 
policy for drought management based on possible tendencies of water balance in the target river 
basin in the future. From this viewpoint, many studies have been reported to promote utilization of 
information on uncertainty contained in hydrological predictions in long-term reservoir management 
(Kelman et al., 1990; Karamouz & Vasiliadis, 1992; Faber & Stedinger, 2001; Kim et al., 2007 
Georgakakos & Graham, 2008; Pianosi & Ravazzani, 2010; Zhao et al., 2011). 
 However, stochastic hydrological predictions have not been explicitly considered in decision 
making for reservoir operation in actual reservoir management. This is because effective 
methodologies have not been developed to utilize stochastic hydrological predictions with various 
degrees of uncertainty in the real-time reservoir operation based on intensive impact analysis of 
uncertainty in long-term stochastic hydrological predictions on improvement in reservoir operation 
when the predictions are considered. Intensive analyses are therefore needed to clarify impacts of 
stochastic hydrological predictions on performance of long-term reservoir operation for drought 
management in order to promote utilization of stochastic hydrological predictions in the long-term 
reservoir operation. From this perspective, Nohara & Hori (2012) have conducted comprehensive 
impact analysis of long-term stochastic inflow predictions (SIPs) and their uncertainties on 
improvement in water release decision making in long-term reservoir operation for water supply, 
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employing reliability and discrimination for indices related to uncertainty of SIPs. In Nohara & 
Hori (2012), the analysis mainly described annually averaged impacts of SIPs, with various 
degrees of uncertainty on reservoir operation for water supply based on the performance of 
simulated reservoir operations. However, further detailed analyses are needed by focusing on the 
impacts of long-term SIPs on improvement in water release performance from a reservoir, 
especially under the drought situation, in order to provide more practical information on the way 
of utilizing long-term SIPs to enhance water release decision making in reservoir operation for 
drought management.  
 Considering the situation mentioned above, this paper analyses impacts of long-term SIPs 
with various degrees of uncertainty on performances of real-time long-term reservoir operation for 
water supply during drought situations where real-time coordination of water supply is inevitable. 
 
METHODOLOGY 

Outline 

A Monte Carlo simulation (MCM) model of reservoir operation for water supply was developed 
by coupling an artificial generation process of SIPs with different attributes of uncertainty for 
impact analysis of them on performance of the operation based on a model developed in Nohara & 
Hori (2012).  
 At first, five-daily SIPs for the coming three months are arbitrarily generated with designed 
uncertainties represented by two indices for reliability and discrimination of the SIPs, respectively, 
so that the predictions can include arbitrary errors and vagueness against true values of inflow to 
the target reservoir. Actually observed inflow regimes at the target reservoir are employed for the 
true values of inflow in this paper in order to make the analysis more practical and detailed 
compared with Nohara & Hori (2012), in which the true values were also artificially generated 
based on the statistics estimated from historical data for general impact analysis. Optimal water 
release strategies are then estimated by stochastic dynamic programming (SDP) considering the 
generated SIPs for the coming three months with five-day resolution. Reservoir operations for 
water supply are conducted according to the estimated optimal strategy, updating SIPs and the 
water release strategy every five days through the designed period for the simulation. This 
simulation is repeated for a number of times as MCM considering SIPs generated in each 
simulation. Impact of SIPs and its uncertainty described with two indices on long-term reservoir 
operation is analysed by aggregating the results of the simulations under the drought situations. 
Impacts of SIPs with arbitrary combinations of reliability and discrimination indices are finally 
analysed by repeatedly conducting the MCMs described above, changing the combination of 
indices for reliability and discrimination of SIPs. 
 
Concepts of two attributes related to uncertainty in SIPs 

SIPs are artificially generated by adding probabilistic distribution of prediction error to the true 
value of inflow at each time step within the predicted period (see also Nohara & Hori, 2012). 
Normal probabilistic distribution is assumed for the probabilistic distribution of the prediction 
error. For generation of SIPs, two basic attributes of SIPs related to their uncertainty are 
considered here. One is reliability, and the other is discrimination (see Fig. 1).  
 Reliability of stochastic predictions can be considered to be a concept associated with the 
correspondence between predicted and observed probabilistic distribution, given the prediction is 
stable. In this study, the distance between centres of predicted probabilistic distribution and 
conditional distribution of observation, given the prediction, is considered as the correspondence 
of two probabilistic distributions, and variance of the distances between centres taken over the 
number of the predictions is employed to represent reliability of the predictions. However, 
discrimination is defined as a concept related to the predicted range of the occurrence of the state.  
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Fig. 1 Concepts of two attributes of stochastic inflow prediction considered in this study. 

 
 In this study, variance of the predicted probabilistic distribution, which also represents spread 
of the distribution, is employed to evaluate how the range of predicted states is specified. 
Discrimination is considered important, as well as reliability, because these two concepts are 
generally independent diagnostic measures of prediction performance and express both 
factorizations of the joint distribution of forecast and observation (Casati et al., 2008). 
 The averaged difference between predicted probabilistic distribution and conditional 
distribution of observation given the prediction is also considered as one of important biases of 
stochastic predictions. This bias can, however, be comparatively easily corrected by adding (or 
subtracting) the averaged difference if the statistics of the prediction are available. This bias is, 
therefore, not considered or discussed in this study, assuming that it has already been corrected.  
 
Generation of SIP with arbitrary uncertainty 

Stochastic inflow predictions are artificially generated so as to control these two important 
characteristics of prediction uncertainty described in the previous section. Generation procedures 
of SIPs for each lead time at each time step of prediction are described as follows (see Fig. 2). 
 At first, a centre (average value) of a predicted probability distribution function (PDF) is 
randomly sampled from probabilistic distribution of the centres of predicted PDFs, which is a 
normal distribution N(μc(t), [σc(t)]2) described in equation (1): 
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where μp′(t) is a sampled value of a centre of a predicted PDF for period t, μc(t) is average of a 
normal distribution which predicted PDFs’ centres follow at period t. In this study μc(t) is assumed 
to be 0 because this bias of the prediction is not considered and therefore there is no difference 
between averaged value of prediction centres and true values. On the other hand, σc(t) is the 
standard deviation of the normal distribution, which predicted PDFs’ centres follow at period t, 
defined by equation (2) (see also Fig. 1):  

[ ] [ ] [ ]2 22( ) Var ( ) ( )c c c ot t C tσ ε σ= =  (2) 
where σo(t) is standard deviation of historically observed inflows at period t, εc(t) is difference of 
centres between predicted probabilistic distribution and conditioned probabilistic distribution of 
observation given the prediction, and Cc is reliability index of SIPs, which is defined as proportion 
of σc(t) to the standard deviation of historical inflow at period t (σo(t)). By this definition, 
reliability of a predicted PDF can be controlled so that the centre of predicted probabilistic 
distribution becomes closer to the conditioned PDF of inflow occurrence given the prediction as 
smaller value is employed for Cc. In case Cc = 0 and subsequently σc(t) = 0, the prediction becomes 
a perfect stochastic prediction, which probabilistic distribution is identical to the conditioned 
probabilistic distribution of observation given the prediction. 



Daisuke Nohara et al. 
 

86 

Q

σo
2(t)

q(t)

Q

σc
2(t)

μp’(t)

f(Q) f(Q)

q(t)

Q

σp
2(t)

f(Q)

q(t)

μp’(t)

Generation of a center 
of  the predicted PDF

Generation of a 
predicted PDF

Q

σp
2(t)

f(Q)

q(t)

μp’(t)

Adjustment of the center 
to ensure properness of 
the predicted PDF

μp(t) μp(t)

Generation of  a 
proper  predicted PDF

True value

Climatic variance

Historical PDF of 
inflow occurrence 
at period t

 
Fig. 2 Schematic diagram for generation of SIP for period t. 

 
 
 The centre of the predicted PDF sampled in the previous step is then adjusted by randomly 
sampling a value again from a normal distribution N(μp′(t), [σp(t)]2), where the centre is μp′(t), the 
previously sampled value for the centre of the predicted PDF, and standard deviation is that of 
predicted PDF σp(t). By this operation, the prediction can have a proper PDF which is identical to 
the conditioned probabilistic distribution of observation given the prediction of μp′(t) = 0. 
Otherwise the prediction falls into a biased one as the centre of the predicted probabilistic 
distribution is always identical to the true value if μp′(t) = 0. The predicted PDF is finally decided 
by considering a normal distribution with standard deviation of σp(t) around the adjusted centre 
μp(t), and described as the following equation: 
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where q*(t) is the predicted inflow for period t, μp(t) is the adjusted centre of the predicted PDF for 
period t, and σp(t) is standard deviation of predicted probabilistic distribution defined as following 
equation (see also Fig. 1): 

[ ]2 22( ) ( )p p ot C tσ σ  =    (4) 

where Cp is discrimination index of SIP, which is defined as proportion of standard deviation of a 
predicted PDF to σo(t). By this definition, discrimination of a predicted PDF can be controlled so that 
width of the PDF becomes wider as Cp becomes greater. The prediction becomes a deterministic 
prediction if Cp = 0. Generation of SIPs is repeatedly conducted by following the procedures 
mentioned above for each time step within predicted range every time prediction is conducted. 
 While any non-negative number can be employed for Cc and Cp, these values must be decided 
so as to fulfil the condition [σc(t)]2+[σp(t)]2 < [σo(t)]2 i.e. Cc

2+Cp
2< 1 in order for the prediction to 

be valuable to be considered. This is because the prediction can be considered no longer valuable 
in cases where the variation of the prediction is more than that of historical distribution of inflow, 
and it would rather be considered rational to consider the historical inflow distribution itself as the 
prediction. 
 The SIP is repeatedly generated for each lead time at each period in each simulation according 
to the procedures mentioned above.  
 
Reservoir operation 

Water release strategy for water use purpose is decided with consideration of the generated long-
term SIP at each time step. The stochastic dynamic programming (SDP) approach is employed for 
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optimization of water release strategy as stochastic prediction has to be taken into account. The 
optimization is conducted so as to minimize accumulated drought damage. The accumulated 
drought damage is described as equation (5), assuming that drought damage can be represented as 
the ratio of water deficit to water demand at the time step: 

[ ] [ ]{ }2min ( ) min max( ,0)
t t t t

t t t t tr w r w
E H w E d w d= −

  
(5) 

where rt is release amount at period t, dt is water demand at an assessed point in the downstream of 
the target reservoir at period t, wt is streamflow at the assessed point calculated by adding water 
amount runoffs between the dam and the assessed point at period t to the release from the dam rt, 
and Ht(wt) is drought damage caused by the water deficit at period t. Optimization of water release 
strategy is conducted so as to minimize future damage function ft() described below:  
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where st is storage state of the target reservoir at period t. 
 
CASE STUDY 

Study area and simulation settings 

The proposed model was applied to a simplified reservoir basin for which data are derived from 
Sameura Reservoir in the Yoshino River basin in Japan, and impact analysis of SIPs with various 
uncertainties was conducted for the drought period. Only the storage capacity for water use 
(173 000 000 m3) was considered for the assumed reservoir, while Sameura Reservoir is actually a 
multi-purpose reservoir. Only one assessed point of streamflow was assumed to be located just 
downstream of the reservoir, and water demand dt and streamflow wt presented in equations (5) 
and (6) were replaced by target release Rt and release rt, respectively. Time step and duration of 
the simulation are set to five days and three months in summer from the beginning of July (period 
37 when counted from January with five-days unit) to the end of September (period 5), 
respectively, in which drought is often observed due to high demand of water. As for the true 
values of inflow, actual inflow sequence observed at Sameura Reservoir during the drought 
periods in typical low flow years (1994 and 2005) and an extreme low flow year (2008) were used.  
 Fifteen scenarios with different combinations of Cc and Cp were each considered in the 
generation of SIPs so as to fulfil the condition of Cc

2+Cp
2 < 1, which is required for the prediction 

to be worth being considered so that the total variance of the predicted value is less than historical 
variance of inflow, while only the results for five different combinations of Cc and Cp with an 
identical value of Cc

2 + Cp
2 are presented as representations in this paper. The combinations of two 

indices are: Cc
2 = 0.4 and Cp

2 = 0.0 (Case 1); Cc
2 = 0.3 and Cp

2 = 0.1 (Case 2); Cc
2 = 0.2 and Cp

2 = 
0.2 (Case 3); Cc

2 = 0.1 and Cp
2 = 0.3 (Case 4); and Cc

2 = 0.0 and Cp
2 = 0.4 (Case 5) all of which 

values of Cc
2+Cp

2 are 0.4 r. Reservoir operation was simulated 1000 times with consideration of 
the SIPs artificially and repeatedly generated for each case of reliability and discrimination indices 
for SIP with five initial storage percentages which are 20%, 40%, 60%, 80% and 100%. Numbers 
of discretization in the reservoir optimization by SDP were set to 100 levels for inflow, release and 
storage states. 
 
Simulation results and analysis 

Simulated results of averaged drought damage over the simulated period with different initial 
storages for each case of SIP’s uncertainty are shown in Tables 1–3. In the results for typical low 
flow years, 1994 (Table 1) and 2005 (Table 2), it can be seen that more damage was simulated as Cc 
became larger and Cp became smaller with comparatively smaller initial storages from 20% to 60%. 
It can be also seen that more damage were simulated as SIPs with smaller Cc and greater Cp were 
considered for the simulation results with larger initial storages from 80% to 100%. However, 
contrasting results are seen in the simulation results for the extreme low flow year (in 2008, Table 3). 
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Table 1 Simulated results of averaged drought damage over the simulated period in 1994. 
Initial storage 
(%) 

Case 1 
(m3/s) 

Case 2 
(m3/s) 

Case 3 
(m3/s) 

Case 4 
(m3/s) 

Case 5 
(m3/s) 

Difference  
(m3/s) 

Rate of difference 
(%) 

20 5.280† 4.990 4.817 4.734 4.674* 0.607 11.5 
40 2.725† 2.450 2.262 2.174 2.113* 0.613 22.5 
60 0.639† 0.515 0.433 0.421 0.420* 0.219 34.3 
80 0.066 0.064* 0.099 0.109 0.142† 0.078 55.0 
100 0.019* 0.023 0.073 0.085 0.118† 0.100 84.4 
*Maximal damage over cases with each initial storage; †minimal damage over cases with each initial storage. 
 
Table 2 Simulated results of averaged drought damage over the simulated period in 2005. 
Initial storage 
(%) 

Case 1 
(m3/s) 

Case 2 
(m3/s) 

Case 3 
(m3/s) 

Case 4 
(m3/s) 

Case 5 
(m3/s) 

Difference  
(m3/s) 

Rate of difference 
(%) 

20 6.416† 6.209 6.128 6.092 6.028* 0.387 6.0 
40 3.292† 3.070 2.920 2.866 2.812* 0.480 14.6 
60 0.781† 0.650 0.562 0.527 0.503* 0.278 35.6 
80 0.018* 0.020 0.044 0.056 0.086† 0.069 79.7 
100 0.011* 0.014 0.039 0.050 0.082† 0.071 86.5 
*Maximal damage over cases with each initial storage; †minimal damage over cases with each initial storage. 
 
Table 3 Simulated results of averaged drought damage over the simulated period in 2008. 
Initial storage 
(%) 

Case 1 
(m3/s) 

Case 2 
(m3/s) 

Case 3 
(m3/s) 

Case 4 
(m3/s) 

Case 5 
(m3/s) 

Difference  
(m3/s) 

Rate of difference 
(%) 

20 20.25† 20.37 20.42 20.49 20.56* 0.304 1.5 
40 14.68† 14.82 14.95 15.06 15.15* 0.471 3.1 
60 10.12 10.11† 10.19 10.31 10.37* 0.261 2.5 
80 6.60* 6.42 6.36† 6.37 6.42 0.236 3.6 
100 3.80* 3.52 3.42 3.36 3.32† 0.478 12.6 
*Maximal damage over cases with each initial storage; †minimal damage over cases with each initial 
storage. 
 
 
It can be seen that more damage was calculated as SIPs with smaller Cc and greater Cp were 
considered when initial storage was comparatively small (20%, 40% and 60%), whereas the model 
simulated more damage when SIPs with greater Cc and smaller Cp were employed in the 
simulations with larger initial storages (80% and 100%).  
 Figures 3 and 4 show a comparison in time series of simulated results for Cases 1 and 5 for 
inflow regime in 1994 with 80% of initial storage, and for inflow regime in 2008 with 20% of 
initial storage, respectively. It can be also seen in Fig. 3 that more damage was simulated in Case 5 
which has larger Cp before low inflow regime continued. However, Fig. 4 illustrates that smaller 
damages were simulated in the earlier periods before period 43 in Case 5 while simulation in Case 
5 demonstrated larger damages in the subsequent periods from period 44 to period 47 by 
conducting large amount of water savings due to a sudden drop in storage volume.  
 Considering the actual inflow regime in 2008 was extremely low, the results described above 
can be summarized as below. In the mild drought situations such as the situations under low flow 
regimes observed in 1994 and 2005 with larger initial storages (e.g. 80% or 100%), the results 
suggest that it is more important to consider long-term SIPs with less Cp, in other words, more 
discriminated stochastic predictions for effective drought management. It can be considered 
because the reservoir operation model considering SIPs with less discrimination conducted more 
water savings by considering the possibility of extreme low flow situation covered with wide 
predicted probabilistic distributions, although they were actually not necessary as the reservoir had  
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Fig. 3 Simulated time series of: (a) damage; (b) storage; and (c) release (1994, 80% of storage). 
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Fig. 4 Simulated time series of: (a) damage; (b) storage; and (c) release (2008, 20% of storage). 

 
 
storage and inflow sufficient to release water so as to mitigate water savings. For moderate 
drought situations such as the situation under low flow regimes (1994 and 2005) with smaller 
initial storages or under extremely low flow regimes like 2008 with larger initial storage (e.g. 80% 
or 100%), the results illustrated that SIPs with less Cc, in other words, more reliable stochastic 
predictions, were preferable for effective drought management by reservoir operation. It can be 
considered because water savings were gradually and adequately conducted by considering SIPs 
with smaller Cc and greater Cp, which tended to keep forecasting occurrence of drought with some 
probability. However, less Cp was again preferred by long-term reservoir operation with 
consideration of SIPs under severe drought situations with extreme low flows and small initial 
storages (e.g. 20–60% in 2008). This can be considered because the reservoir operation model 
tended to relax water savings influenced by prediction of large inflow, which is also covered with 
predicted probabilistic distributions with wide skirts, and tended to subsequently increase drought 
damage after storage completely dropped off, when SIPs with large Cp were considered.  
 
CONCLUSION 

Impacts of long-term SIPs and their uncertainties on reservoir operation for water supply under 
drought situations were analysed and discussed. Through the impact analysis by the Monte Carlo 
simulation of reservoir operation considering SIPs with various degrees of reliability and 
discrimination, it was suggested that impacts of SIPs and their uncertainties can vary depending on 
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the seriousness of droughts at the target reservoir: discrimination index Cp is considered more 
important in mild droughts; reliability index Cc is considered more important in moderate 
droughts; and discrimination index Cp is considered more important in severe droughts. The 
further investigations are, however, considered necessary to generalize the results observed in this 
application as the impact analysis was conducted for only one reservoir basin. The impacts of the 
persistence in the prediction errors or uncertainties are also considered important issues to be 
analysed and discussed in the future. 
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