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Abstract We investigate the influence of pilot points location on our ability to characterize key parameters 
describing a randomly heterogeneous porous medium via geostatistical inverse modelling. Our methodology 
is framed in a Maximum Likelihood (ML) context. We estimate the optimal location of pilot points through 
a differential evolution method (DEM) which we embed in the inversion of moment equations of 
groundwater flow. The DEM allows investigating a large number of candidate solutions to select those 
leading to the minimization of a given objective function through an algorithm that mimics the process of 
natural evolution. We explore the strength of the methodology by way of a synthetic example and we 
investigate the effect of the parameters embedded in the algorithm and the ability of model quality criteria 
such as negative log likelihood, the Bayesian criteria BIC and KIC and information criteria AIC, AICc and 
HIC to estimate the optimal pilot points locations. 
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INTRODUCTION AND THEORETICAL BACKGROUND 

Heterogeneous groundwater systems are often characterized through inverse modelling techniques. 
The explicit goal of an inverse method is to provide images of the spatial distribution of log-
conductivity, Y, minimizing the misfit between observed and calculated quantities (such as 
hydraulic heads, h). Parameterization techniques are often employed to describe the spatial 
distribution of Y in terms of a relatively small number of parameters. 
 The pilot points approach was introduced by de Marsily (1984). The parameters of the system 
are Y values at measurement locations (if available) and at additional selected (pilot) points. The 
choice of the number, NP, and spatial distribution of pilot points is a main step in the approach. In 
the context of geostatistical inversion of deterministic groundwater flow equations, Alcolea et al. 
(2006) investigate the influence of NP on the quality of model estimates. By way of a synthetic 
example, these authors note that the mean absolute estimation error of Y (defined as the mean 
absolute difference between the true and estimated values of Y at each grid node) decreases as NP 
increases. During geostatistical inversion of groundwater flow Moment Equations, Riva et al. 
(2010) find that the mean absolute error of Y estimates tends to decrease with NP until it attains a 
stable value. 
 The analysis of the optimal spatial distribution of pilot points has received little attention. 
LaVenue & Pickens (1992) and Ramarao et al. (1995) employ adjoint sensitivity analysis and 
estimate optimal pilot points locations on the basis of their potential to minimize a selected 
objective function. Wen et al. (2005, 2006) couple Sequential Self Calibration (SSC) with a 
genetic algorithm during inversion for a synthetic reservoir model. The genetic algorithm is 
employed to: (a) update reservoir properties at pilot points locations, and (b) select an optimal 
spatial distribution of pilot points. An optimal set of pilot points locations is not detected for their 
example. Christensen & Doherty (2008) deal with the same problem by using a singular value 
decomposition of the sensitivity matrix of the pilot points-based inverse model. Pilot points are 
distributed uniformly over the simulation domain, and the model is calibrated with a small number 
of super parameters, corresponding to the largest eigenvalues of the sensitivity matrix. The authors 
recommend adopting a dense pilot points network and a large number of super parameters. 
 Here, we address this issue in the context of stochastic Moment Equations of flow. Our 
approach is based on the work of Hernandez et al. (2006) and Riva et al. (2009). These authors 
developed nonlinear stochastic inverse methods and algorithms to condition estimates of steady 
state and transient hydraulic heads, fluxes and their associated uncertainty on information about 
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measured values of Y and hydraulic head. Their methodology is based on zero- and second-order 
approximations of exact nonlocal stochastic first and second moment equations of groundwater 
flow (Guadagnini & Neuman, 1999). Estimates of Y at measurement and pilot points locations is 
framed in the context of Maximum Likelihood (ML) theory. The negative log likelihood criterion 
(Carrera & Neuman, 1986): 

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ln ln ln 2
T T

NLL N π= − − + − − + + +* -1 * * -1 *
h Y Y hh h C h h Y Y C Y Y C C

 
(1)

 
is minimized with respect to the model parameters. In equation (1), ĥ  is a vector of conditional 
mean heads predicted at Nh observation points, h* is the vector of head measurements, Ŷ  is an 
inverse estimate of log-conductivity at NM measurement points and NP pilot points, *Y  represents 
measured values of Y  at measurement and pilot points locations. Prior values of Y at pilot points 
are evaluated via kriging. 2

h hE hσ=C V  is the covariance matrix of head measurement errors, 
2

Y YE Yσ=C V  is the covariance matrix of Y measurement errors, 2
hEσ and 2

YEσ are (typically 
unknown and hence to be estimated) statistical scaling parameters; hV  and YV  are known 
symmetric positive-definite matrices, Y M PN N N= +  and h YN N N= + . The covariance matrix 
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where YMC  is the diagonal covariance matrix of Y measurement errors and YPC  is the (generally) 
non-diagonal covariance matrix of Y estimation errors at pilot points. 
 If the variogram of Y, 2

hEσ and 2
YEσ are fixed, minimizing equation (1) is equivalent to 

minimization of the regularized general least squares criterion: 

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆT T
J λ= − − + − −* -1 * * -1 *

h Yh h V h h Y Y V Y Y
 (3) 

where 2 2
hE YEλ σ σ=  is a regularization term. 

 The Bayesian criterion BIC (Schwarz, 1978) and information criteria AIC (Akaike, 1974), 
AICc (Hurvich & Tsai, 1989) and HIC (Hannan, 1980) differ from NLL by constant values that 
depend on NY, Nh and N. Riva et al. (2010, 2011) find that measurement error variances and key 
parameters of the variogram of Y can be estimated properly for a fixed set of pilot points locations 
by minimizing the Bayesian model discrimination criterion KIC (Kashyap, 1982): 

( )ln 2 lnYKIC NLL N N π= + − Q  (4) 
where Q  is the estimation errors covariance matrix. In the following sections we explore the 
ability of a zero-order approximation of moment equations of flow to estimate the optimal 
locations of a prescribed number of pilot points. 
 
 
NUMERICAL MODEL SET-UP 

We consider the synthetic test case presented by Hernandez et al. (2006). Convergent flow is 
superimposed to mean uniform flow in a rectangular domain of length 18 and width 8 (all 
quantities are given in arbitrary consistent units). The domain is discretized into Ne = 3600 square 
elements of uniform size equal to 0.2. The Sequential Gaussian simulator GCOSIM3D (Gómez-
Hernandez & Journel, 1993) is employed to generate a single unconditional realization of Y at 
block centres having zero mean and an exponential isotropic variogram with sill 2

Yσ = 4.0 and 
integral scale IY = 1.0. Deterministic head values of 10 and 0 are prescribed along the left and right 
boundaries, respectively. The top and bottom boundaries are considered to be impervious. A well 
is located at the domain centre (see Fig. 1) and pumps continuously at a constant unit rate. The 
corresponding forward steady-state flow problem is solved numerically to yield head values at all 
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grid nodes (see Fig. 1). These generated log-conductivities and heads constitute our reference 
values. We sample the head field at Nh = 36 measurement points and the Y field at 16 points. We 
then superimpose white Gaussian noise (measurement error) of unit variance to each set of 
measurements ( 2 2 1; ;YE hE YM hσ σ= = = =V I V I ). 
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Fig. 1 Reference Y field, spatial distribution of Y () and h (+) conditioning measurements and 
pumping well location (●). Contour lines indicate the reference h field corresponding to a pumping rate 
Q = 1. 

 
 
 For demonstration purposes, we take the parameters of the variogram of Y to be given and 
pre-define the number of pilot points, NP. Our goal is to estimate: (a) Y values at measurement and 
pilot points locations, (b) the statistical parameters 2

YEσ  and 2
hEσ , and (c) the optimal pilot points 

locations. These objectives are accomplished following the methodology proposed by Riva et al. 
(2010, 2011). The space of candidate locations of pilot points is searched by a differential 
evolution method (DEM). 
 
 
RESULTS AND DISCUSSION 

A critical point in the application of a DEM is the choice of the objective function to minimize for a 
given purpose. Here, we focus on the estimate of the optimal spatial distribution of pilot points for a 
given value of NP. In our example we set NP = 64. The total number of candidate spatial 
configurations is ( ) 138! ! ! 1.8 10e P e PN N N N − ≈ ×   for our numerical example. It is noted that, 
when the location of pilot points changes between iterations of the inverse problem, YPC  can play an 
important role in the optimization process. When the spatial distribution of pilot points is such that 
their associated conductivity values are highly correlated, YPC  can become singular, and 
ln ln ln= +Y YM YPC C C  → −∞  (equation (1)). This implies that spatial arrangements where pilot 
points are clustered within a (relatively) small area tend to be favoured relative to scenarios where 
the pilot points are spread uniformly over the domain. These theoretical observations are supported 
by the numerical results (not shown) obtained minimizing NLL to detect the optimal pilot points 
locations. Considering that the Bayesian criterion BIC and the information criteria AIC, AICc and 
HIC differ from NLL by a constant, we conclude that none of these criteria is suitable to our purpose, 
at least in a situation where the number of pilot and (Y) measurement points is fixed. 
 In the following we explore the capability of KIC to identify the optimal pilot points 
arrangement. We do so by embedding the code INME (Riva et al., 2011) into the genetic based 
algorithm DEM (Storn & Price, 1997). The convergence process of DEM relies on a heuristic 
search algorithm that mimics the process of natural evolution. This process is performed through 
the steps of initialization, mutation, cross-over and selection. 
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 In the initialization step we generate a population of vectors xi,G=1, where G is the generation 
number, and i = 1, …, SP. In our example we set SP = 100. Each vector contains the coordinates 
of the NP pilot points and the values of the unknown statistical parameters. The locations of the 
pilot points are chosen randomly from the set of the grid element centroids, in such a way that the 
grid cells are associated with equal probability to be assigned a pilot point and that no more than 
one pilot point or one Y measurement can be found in the same grid element. With reference to the 
statistical parameters 2

YEσ  and 2
hEσ , we extract two random values from a continuous uniform 

probability density function defined on the interval 6 410 ;10−   . This allows use of the code INME 
to perform an inversion of the flow problem for each of the SP vectors and to calculate the 
corresponding value of KIC. 
 A set of SP mutant vectors is created in the mutation step by: 

( ), 1 , 1, 2, 3, 4,i G best G r G r G r G r GK+ = + + − −v x x x x x  (5) 

where xbest,G is the vector of the set xi,G with the smallest value of KIC; r1, r2, r3 and [ ]4 1;r SP∈  
are random different integers. We set K = 0.3 in our simulation. 
 A third set of trial vectors ui,G+1, i = 1,…,SP is then created through the cross-over step. The 
value of the component of xi,G or vi,G+1 is assigned to each corresponding component of a cross-
over vector ui,G+1 with probability CR or ( )1 CR− , respectively. In our example we adopt a value 
of CR = 0.5. Computation of the value of KIC corresponding to each element ui,G+1 is performed 
after the population of trial vectors ui,G+1, i = 1, …, SP has been determined. 
 A new generation of vectors xi,G+1 is then created. This is accomplished for each i = 1, …, SP 
by setting xi,G+1 = xi,G or xi,G+1 = ui,G+1, respectively, depending on whether the value of KIC 
corresponding to the component of the vector xi,G is smaller or larger than the value of KIC 
associated with vector ui,G+1. 
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Fig. 2 Optimal pilot points configurations obtained by minimization of KIC and estimated Y fields, with 
corresponding colour scale. Contour lines indicate estimated h fields. 

 
 
 The mutation, cross-over and selection steps are iterated until convergence is reached (i.e. 
when , 1 ,i G i G+ ≈x x  for all i = 1, …, SP). It is then clear that the convergence process of DEM is 
associated with some elements of randomness. These affect: (a) the distribution of the search 
parameters of the initial population vectors, and (b) the mutation and cross-over processes, which 
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drive the generation of the new trial vectors (offspring) from the current population. This is the 
reason why simulations performed starting from different seeds initializing a Random Number 
Generator (RNG) will employ different sequences of random numbers and will in general produce 
different outcomes. We explore this issue performing four different inversions, each associated 
with a different seed in the RNG. The common characteristics shared by the results of the 
simulations can be interpreted as the main-features of the (unknown) optimal spatial arrangement 
of the pilot points. Figure 2 depicts the optimal pilot points distribution obtained for each of the 
four simulations. Figure 3 reports the evolution of the values of the KIC criterion during the 
optimization process. Our results show that the algorithm converges to a stable value in less than 
20 iterations for all the simulations. 
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Fig. 3 Convergence of the KIC criterion during the optimization of pilot points locations. 

 
 
 Although the final pilot points configurations do not coincide for the four cases analysed, they 
all exhibit some common features (Fig. 2): (a) an area, identified with the (left) dashed rectangle, 
where the concentration of pilot points is small relative to the rest of the domain; (b) a zone 
(marked by the ellipse) with a large concentration of pilot points; and (c) a part of the domain 
(marked by the dashed-dotted rectangle) associated with a more-or-less uniform distribution of 
pilot points. These common elements appear to be correlated with the gradient of the reference 
(Fig. 1) and estimated (Fig. 2) hydraulic head fields, as the largest pilot points density occurs 
within regions of steep hydraulic head gradient. 
 We conclude our note with the analysis of the influence of the number of Y conditioning 
measurements, NM, on the optimal distribution of pilot points. We set the seed of the RNG equal to 
the value adopted for the simulation depicted in Fig. 2(d) and perform the inversion after removing 
the four measurement of Y located at x = 6.9 from the conditioning data set (see Fig. 1), resulting 
in NM = 12. Figure 4 displays the optimal pilot points setting obtained for this scenario, showing 
the effect of a decreased number of conditioning measurements on the distribution of pilot points 
in the region where the Y measurements have been disregarded. Comparing Figs 2(d) and 4 reveals 
that a significant number of pilot points have migrated from the left side of the left rectangular 
region (Fig. 2(d), 1 2x ≈ ÷ ) towards the interior part of the area (at about 4.5x ≈ , Fig. 4). This 
shift has been induced by the decreased number of measurement points adopted. We note that the 
density of pilot points remains large within the area delineated by the ellipse (Fig. 4) and pilot 
points tends to remain uniformly distributed for x > 10. 
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Fig. 4 Optimal pilot points configuration and estimated Y field, with corresponding colour scale. 
Contour lines indicate the estimated h field. Results are obtained for NM = 12. 

 
 
CONCLUSIONS 

Our examples show that embedding the geostatistical inversion of groundwater flow Moment 
Equations within a genetic-based sampling algorithm allows identifying an optimal spatial setting for 
pilot points. These preliminary numerical results suggest that it is beneficial to concentrate the pilot 
points where the largest values of the hydraulic head gradient are expected, i.e. within regions where 
strong log-conductivity contrasts may occur or in the proximity of source/sink terms. On the other 
hand, the pilot points can be distributed uniformly in the areas of the domain where the spatial 
variation of the head field is relatively smooth. Another relevant aspect is related to the distribution 
of the available conditioning measurements of conductivity. Our simulations suggest locating the 
pilot points to compensate for the lack of measurements in given regions of the system. 
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