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Abstract Calibration of distributed environmental models requires a high amount of either computing power 
or time, which can be a significant issue. As the computational effort for distributed models mainly depends 
on the number of spatial modelling entities, a promising approach for their optimization is to decrease these 
entities while sustaining the major characteristics of the model. In this article, a two-stage approach is 
presented to reduce the computational effort. In the first stage the number of spatial units is decreased, thus 
simplifying the original representation of the catchment. Spatial units are eliminated or merged with other 
units according to different merging rules (e.g. merging of similar units). The simplified model is used to 
carry out an initial calibration. In the second stage the process of simplification is reversed, i.e. the spatial 
representation of the catchment is restored stepwise. The obtained parameter sets are recalibrated. This is 
reiterated until the original distribution is recovered. To test and analyse this strategy, the distributed model 
J2000 is applied on the two meso-scale catchments of the Wilde Gera and Ilm, both located in central 
Germany. Furthermore, variations of the approach to simplify the spatial representation are analysed.  
Key words  calibration; hydrology; spatial representation 
 
 
INTRODUCTION 

Analysis of the spatial distribution of hydrological states in a catchment usually requires utilization 
of semi-distributed or distributed hydrological modelling concepts. Distributed hydrological 
models subdivide the catchment into a number of spatially discrete modelling units (i.e. sub-areas). 
These units may either be hydrological response units, sub-catchments, square grid elements or 
even arbitrary triangles. Hydrological processes are simulated separately for each unit but 
interactions between different units are possible in most models (Reed et al., 2004).  
 Therefore, computational effort scales at least linearly with the number of spatial modelling 
units. This is rarely a limitation for a sole model execution, but to apply distributed hydrological 
models successfully it is essential to determine model parameters very carefully. The estimation of 
parameters is usually done by fitting model response to observed data in a trial-and-error process 
(Gupta et al., 2005).  
 Obtaining a solution of this nonlinear optimization problem could be difficult and time 
consuming. It is known that objective functions could show inconsistencies of second and 
sometimes even first grade, and are often superimposed with noise (Duan et al., 1993). 
 Thus, computational effort limits either the size of the representable catchment or its level of 
detail. This can be an issue if the scale of the spatial modelling units is above the scale of the 
process-scale, i.e. the scale which is exhibited by the natural processes. If this is the case, a direct 
physical-based simulation of these processes is hardly possible such that only a reflection of their 
statistical properties can be made (Blöschl, 1995). 
 To speed up the optimization procedure a common approach is to replace the initial problem 
by some relaxed sub-problems that are easier to solve (e.g. Horst & Tuy, 1996). The approach 
presented in this paper is to carry out the major part of the calibration routine on a simple model 
using only a reduced set of spatial modelling units and to transfer the attained parameters to the 
original model. There are two issues about this strategy. Firstly, it is not clear whether or not the 
substitution model is able to represent the hydrological processes well enough such that it is 
possible to apply this strategy efficiently. Secondly, the need for parameter scaling arises due to 
transferring model parameters. Several authors pointed out that this is usually a complicated task 
(e.g. Beven, 1989, Refsgaard, 1997). A promising approach is introduced by Samaniego et al. 
(2010). This article shows that the first issue is not a problem at all, at least with the hydrological 



A two-stage strategy for efficient and effective calibration of distributed hydrological models 
 

19 

model J2000 which has been used for testing. The second issue is solved by stepwise refining of 
the coarse model until the initial model is restored. At each step of refinement a short recalibration 
is carried out. Although this approach is demonstrated with J2000, it is applicable to other 
distributed environmental models. 
 
 
METHODOLOGY 

Hydrological model J2000 

The distributed, process oriented model J2000 was developed for hydrological simulation of the 
upper meso- and macro scale (Krause, 2001). It is implemented in the Jena Adaptable Modelling 
System (JAMS, Kralisch et al., 2006), which is a software framework for component based 
development and application of environmental models. The model describes single hydrological 
processes as encapsulated process modules. Beside modules for simulation of the runoff 
generation and runoff concentration processes, J2000 offers routines for regionalization and 
correction of climate and precipitation input data, model calibration and visualization (Kralisch et 
al., 2007). 
 
 

 
Fig. 1 the catchment is partitioned into a set of HRUs, which are laterally connected according to their 
flow topology. 

 
 
 J2000 uses Hydrological Response Units (HRUs) for the spatial representation of a catchment. 
HRUs are homogenous with regard to their physiography (e.g. topographic features, land use, soil 
properties). Therefore it is possible to assign a characteristic hydrological process response to each 
HRU (Flügel, 1996). They are connected by a lateral routing scheme to simulate lateral water 
transport processes (see Fig. 1) either with their downhill successor HRU or with a river reach they 
are draining into. River reaches themselves are always connected with their downstream reach. 
The model simulates relevant hydrological processes like evapotranspiration, snow accumulation 
and melt, soil water balance and groundwater processes for each HRU separately.  
 HRUs are delineated by combining different spatial data layers by an overlay analysis such 
that each HRU is spatially defined by a polygon. Advantages of this polygon based concept of 
HRUs is the conservation of the natural properties of the catchment, like topography, land use, 
soils and geology during the discretization process, which also results in a comparatively small 
number of modelling units (compared for example with raster based approaches). 
 
Speeding up calibration 

Let  
 



C. Fischer et al. 
 

20 

be a hydrological model M, mapping input data l into some output space Dsim and θ ∈ P 
parameters to adjust the model to the catchment characteristics. Furthermore, let τ∈[0,1] be the 
relaxation parameter controlling the spatial complexity of the model. If τ is set to zero the model 
uses a very simple spatial representation consisting only of a single unit. On the opposite the initial 
fully detailed model is used if τ equals one. To generate spatial representations with different 
complexity, four different alternatives are described in detail later. 
 To calibrate the model M some observation data O are required, which will be compared with 
the simulated data. In this paper the similarity between both datasets is quantified by the well-
known Nash-Sutcliffe Efficiency E2 (Nash & Sutcliffe, 1970). For simplicity the aim of the process 
of calibration is simply to find a parameter set θ *∈ P  such that  

 
The calibration strategy is outlined in Algorithm 1. In order to apply the relaxation paradigm, the 
simplest possible model is calibrated first. Thus τ is set to zero, such that the model degenerates to a 
lumped model. Calibrating such a model can be done tremendously faster than for the case of τ = 1, 
even if the search is very exhaustive. To perform this task the global evolutionary optimization 
routine Shuffled-Complex-Evolution-UA (SCE-UA, Duan et al., 1992) is used. It has shown its 
effectiveness, robustness and efficiency in various studies mostly in the context of hydrology. 
 The search with the SCE method is carried out in an iterative fashion and finishes as soon as 
the improvement in the last two iterations is smaller than a given amount (in our case 5%). In the 
next step the model is refined stepwise, i.e. τ is increased by a step size ρ carrying out a 
recalibration every time. The method starts with the optimal parameter-set of the last calibration 
and finishes at the new optimal parameter. This procedure is reiterated and the optimal parameter 
set for the initial model is obtained. Assuming some degree of continuity between  and the 
corresponding optimal set of parameters, i.e. slight changes in the spatial representation do not 
change the optimal set of parameters significantly, allows for the usage of the local search method 
Nelder-Mead (Nelder & Mead, 1969) speeding up this approach dramatically. 
 
Approaches to simplify the spatial representation 

To decrease the complexity of the spatial representation several alternatives have been implemented, 
which are based on pairwise merging HRUs. Every merge requires recalculation of the HRU–
attributes (e.g. area, topographical parameters, soil type, etc.). While for the quantifiable properties at 
least its exact mean is representable, aggregation of categorical properties, like land use type, 
eliminates a considerable amount of information, because only one class can be preserved. As stated 
before, a HRU is defined to be homogenous, which is violated by this approach. Therefore it is 
improper to model a catchment with such an oversimplified model. However, this is not a restriction 
here, because it is only used as an auxiliary construct for calibration. 
 HRUs are always merged either with a HRU directly connected or a HRU draining into the 
same river reach. If there are no such HRUs, reaches are merged until two HRUs drain into the 
same river segment and can be merged. This procedure can be reiterated until there is only one 
HRU representing the whole catchment.  
 
 

  
Algorithm 1 Outline of the calibration algorithm. 
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 The order in which HRUs are merged is considered to be important to achieve continuity 
between  and the optimal parameter set. Four different approaches are presented here. 
 M1 Merge smallest HRUs first. The smallest HRU in the current spatial representation is 
selected and merged with its downstream connected neighbour.  
 M2 Merge most similar HRUs. The most similar pair of HRUs is identified, where similarity 
S is quantified by a weighted mean  

 
where psrc and pdst are the properties of the two HRUs for merging (see also Table 1). 
 M3 Merge HRUs with lowest runoff generation. The HRU with the least runoff generation is 
identified and merged with its downstream connected neighbour. This information is obtained by 
executing the model with a default parameter-set. 
 M4 Merge most similar HRUs with respect to size. 
The method M2 is applied, but the area of the HRUs is taken into account by multiplying the 
similarity measure S with the size of the HRU: 

 
 
 
Table 1 Weights used to compute similarity between HRUs (based on the author’s experiences). 

p Slope (%)  Aspect (°) Elevation (m) q Soil type  Land use Geology 
wp 1 0.01 0.01 wq 5 3.5 1 
 
 
Table 2 Spatial representations obtained for different values of τ. The simplification was carried out with 
four different merging rules. For each representation the Nash–Sutcliffe Efficiency E2 between observed and 
simulated runoff was computed. 

 1.0 0.6 0.2 0.1 0.05 
M1 Spatial 

Modelling 
Units 

     
E2 0.81 0.79 0.77 0.73 0.67 

M2 Spatial 
Modelling 
Units 

     
E2 0.81 0.78 0.74 0.67 0.62 

M3 Spatial 
Modelling 
Units 

     
E2 0.81 0.79 0.77 0.72 0.63 

M4 Spatial 
Modelling 
Units 

     
E2 0.81 0.80 0.78 0.76 0.70 
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 Table 2 compares the spatial representation for some values of τ. For each representation a 
single model run with an optimal parameter-set for the initial model was carried out and the 
achieved Nash–Sutcliffe Efficiency is noted. As shown in Table 2 the distribution of spatial 
modelling units obtained by methods M1 and M3 is quite similar; this is not surprising as there is a 
strong correlation between size of area and runoff generation. For both methods the modelling 
units are similarly sized and uniformly distributed over the catchment at the end. The quality of the 
model decreases a bit faster with M3 than with M1. M2 produces a spatial representation with a 
very inhomogeneous distribution of modelling units. There are many more units around the river 
than in other regions of the catchment, which is explained by homogeneity differences in the 
original representation. At the end only three large modelling units and some very small areas are 
left. This is reflected by a fast decrease of model efficiency. Method M4 compensates the 
disadvantage of M2 by taking into account the size of the spatial units, while preserving as much 
of the properties as possible, which results in a more process oriented distribution of modelling 
units. Even in the coarse representation it is still possible to visually locate the streams inside the 
catchment. As M4 is capable of preserving high efficiencies even for low values of τ it seems so 
be best suited for simplifying the spatial representation.  
 
Determination of step size ρ 

Crucial for the success of the relaxation approach is the step size ρ (see Algorithm 1). If ρ is 
chosen too small, calibration becomes slow, but in contrast the difference between consecutive 
optimal parameter-sets becomes too large to allow the use of local search methods. Two options 
for choosing the step size are analysed. At first a fixed step size of 0.1 is used so that the relaxation 
is carried out in 10 steps until the initial problem is restored. Secondly, an adaptive method was 
developed, which is using a nested interval search to determine a step size such that the model 
response does change by approximately 5%.  
 
 
APPLICATION 

Study area 

Two well-investigated catchments in Thuringia, Germany were selected to demonstrate the 
described methods with the model J2000. Both catchments border each other and are similar in 
their physio-graphical and climatological properties. The average annual temperatures are around 
6–7°C. In the higher parts of the catchments annual precipitation is larger than 1400 mm.  
 The Wilde Gera is located at the northern part of the sub mountainous area of the Thüringer 
Wald (Fig. 2). The catchment covers 13 km2. Despite the small size, there is an elevation range of 
420m. The catchment is covered mostly with coniferous forest (94%). In the lower part is some 
agriculture (2%) and deciduous forest (4%). 
 
 

  
Fig. 2 Wilde Gera to gauge Gehlberg.  
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Fig. 3 Ilm to gauge Gräfinau-Angstedt.  

 
 
 The Ilm has its source in the central part of the Thüringer Wald (Fig. 3). The catchment has a 
size of 155 km2 and an elevation range of 500 m. Dominating land use of the catchment is 60% 
coniferous forest, 12% grassland and 10% sealed areas. The hydrological regime is influenced 
mainly by lateral flow processes and snow melt. 
 
 
RESULTS 

The relaxation strategy is applied to both models of the Wilde Gera and Ilm catchments. The 10 
most dominant parameters are chosen for calibration, mainly controlling the simulation of snow 
processes, lateral flow processes and groundwater processes. The results of this study are 
summarized in Table 3. For the purpose of comparison with a traditional calibration, the SCE 
method is used first. That calibration was reiterated 10 times, because SCE contains some 
randomness. To compare the efficiency of the calibration routines, two measures are taken into 
account. Firstly the quality is measured by the Nash-Sutcliffe Efficiency and secondly the 
computational effort is measured by unit iterations. For a single model execution this is defined to 
be the number of spatial units the model uses. For a whole calibration it is the sum of the unit 
iterations required for each individual simulation of the calibration process. 
 In the case of the Wilde Gera an average Nash-Sutcliffe Efficiency of 0.816 is achieved, with 
1.1 million unit iterations. The catchment of the Ilm is much larger, containing about four times 
more spatial units. The average effort scaled to nearly linearly to 4.3 million unit iterations 
achieving an efficiency of 0.769.  
 
 
Table 3 Comparison of the efficiency of the relaxation strategy for two catchments with different merging 
rules. 
Catchment Method Nelder Mead (A) SCE (B) Adaptive (C) 

Time in 10³ 
Unit 
Iterations 

Quality 
in E2 

Time in 10³ 
Unit 
Iterations 

Quality  
in E2 

Time in 10³ 
Unit 
Iterations 

Quality 
in E2 

Wilde Gera Reference – 1102 0.816 – 
M1 480 0.777   990 0.803 627  0.808 
M2 1323 0.819 1050 0.795 540 0.788 
M3 593 0.813   948 0.820 692 0.808 
M4 297 0.814   827 0.780 535 0.752 

Ilm Reference – 4273 0.769 – 
M1 2078 0.731 4228 0.754 1530 0.737 
M2 2007 0.768 3800 0.744 1906 0.767 
M3 2027 0.772 3940 0.752 2993 0.784 
M4 2481 0.743 2811 0.757 1811 0.750 
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 The relaxation strategy is used to test the four merging rules. For each of them the calibration 
is repeated once with the fixed step size and once with the adaptive step size. To achieve a 
considerable speed-up this strategy should be applied with a local search method, like the Nelder-
Mead method. To see whether or not it is capable of finding the global optimum for each sub-
calibration the SCE method is used additionally (column B of Table 3). Therefore 44 calibrations 
were performed on a Linux cluster computer with 64 computing cores. This is already a huge 
amount of computing effort, so it was not possible to reiterate the individual calibrations to get 
more significant results.  
 However, it becomes apparent that the relaxation is beneficial. Using the Nelder-Mead 
method with a fixed step size (column A), the required computing effort is reduced by 45% on 
average compared to the traditional approach, while the Nash-Sutcliffe Efficiency is altered by 
<5%, which is not significant. The only exception occurred during the application of method M2 
to the Wilde Gera, but this outlier probably results from unfavorable starting conditions.  
 A comparison of the Nelder-Mead method with SCE (columns A and B) shows that the local 
method is able to find the global optimum, or at least a very good approximation of it, because it is 
<5% worse than SCE. Sometimes it is even better, but requires less than half of the computational 
effort. It seems that the relaxation is also favorable when using SCE, because the computing effort 
is slightly (~13%) below the reference, which is somewhat surprising. 
 Concerning the use of an adaptive step size, there is still some potential. Although a notable 
increase of efficiency is achieved (~30–60%), it is often more time-consuming than in the case of a 
fixed step size. Therefore, better strategies for adaptation of the step size could lead to more 
improvement.  
 
 
Table 4 Short description of some important parameters. 

Parameter Description 
FCAdaptation Factor to adjust maximum middle pore storage 

capacity of the soil 
flowRouteTA Stream flow routing parameter 
gwRG2Fact Groundwater recession parameter 
soilConcRD1 Surface runoff recession parameter 
 
 
 The merging rules were not very sensitive, as seen especially for the Ilm catchment (Table 3, 
Nelder-Mead column). This is also supported by Fig. 4, which shows the influence of the spatial 
model complexity τ on the nearly optimal parameter values. Therefore, the range of the best 10% 
of all parameter sets occurred during a SCE optimization are plotted against each value of E2. Due 
to space restrictions, Fig. 4 shows only the parameters soilConcRD1, flowRouteTA, aRain, 
gwRG2Fact (explained in Table 4) and some of the methods. But the analysis was carried out for 
each parameter, simplification method and catchment. It can be concluded that the different 
methods do not show significant differences, e.g. as seen in Fig. 4 (Wilde Gera M1 vs M4).  
 Figure 4 shows the distribution of the best parameter sets around the parameter space for 
different values of τ. In the case of the lumped model (i.e. τ=0), the range of the best parameter 
sets is very small. Therefore, the optimal set of parameters is well identifiable for this simple 
model. With increasing spatial model complexity the parameter identifiability begins to decrease 
rapidly. With τ between 0.1 and 0.2, the nearly optimal parameters are scattered around a broad 
range of the parameter space. But this process is reversed with further increase of τ. At 40% of the 
initial spatial complexity, the range of the best parameters is getting smaller and is stagnating at a 
low level. Therefore it should be possible to calibrate the models on a spatial representation 
containing only 40% of all HRUs. 
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Fig. 4 Dependency between the best sets of parameters and the spatial complexity . 

 
 
CONCLUSION AND FUTURE WORK 

This article describes the investigation of a two-stage strategy to speed up the calibration of 
spatially distributed hydrological models. The strategy is based mainly on relaxation of the model 
during calibration by reduction of spatial model complexity. The comparison with traditional 
approaches showed that this strategy is able to calibrate the model with only about half the 
computational effort, while maintaining the original quality.  
 Different strategies were tested to optimize the procedure. Firstly, four different merging rules 
were applied to reduce the spatial complexity of the model, but the results showed that this did not 
have a significant influence. In addition, an adaptive adjustment of spatial complexity was 
integrated but found to degrade the method’s performance. There is still potential to modify the 
adaptation rule and to speed up the process of calibration. 
 The analysis of the optimal parameter values depend on the spatial complexity showed that 
the parameters of models with very simple spatial representations are very identifiable, where the 
best parameter sets of slightly more complex models are distributed more broadly. The reason for 
this is not obvious and must be investigated in more detail. 
 If the spatial representation has >40% of its initial complexity, parameters become identifiable 
again and the influence of the spatial representation on the optimal parameterization stagnates at a 
low level. This property can be used to calibrate the model even more efficiently. Furthermore, it 
would be very interesting to compare these results with other modelling systems and other spatial 
representations (e.g. grids). 
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