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Abstract Aquitards can be effectively parameterised and incorporated in a groundwater flow model by using 
standard cone penetration tests (CPTs). Several conceptually different realizations of an aquitard’s hydraulic 
conductivity field were evaluated based on: (i) conventional methods of soil behaviour type classification,  
(ii) recent relationships from the literature, and (iii) novel site-specific relations with hydraulic conductivity. 
We show that use of most of these CPT-based hydraulic conductivity estimations in groundwater flow 
modelling effectively enhance model performance based on absolute head values and gradients across the 
aquitard. Conceptual models that considered a spatially heterogeneous hydraulic conductivity for the aquitard 
performed better than the reference case with a uniform aquitard hydraulic conductivity. However, the 
hydraulic conductivity of thin heavy clay lenses, characteristic of the aquitard present in our study area, cannot 
be captured using these continuum approaches. The latter leads to a bias in the direct hydraulic conductivity 
predictions; an alternative is to invoke inverse modelling with the heterogeneous parameter fields. To address 
this issue, the concept of the boundary energy associated with the CPT signal is also introduced for 
characterising the presence of heavy clay lenses. Overall, the CPT-based concepts provide more accurate, 
robust, and high-resolution data-based parameterisation of the studied aquitard. 
Key words  groundwater modelling; hydraulic conductivity; soil behaviour types; cone resistance; friction ratio; 
geostatistics; inverse optimisation; upscaling; cone penetration tests; model performance 
 
 

INTRODUCTION 
Several studies have investigated the correlations between geotechnical data (e.g. cone penetration 
tests or CPTs, see Fig. 1) and hydrogeological parameters such as hydraulic conductivity K (e.g. 
Anagnostopoulos et al., 2003; Tillmann et al., 2008; Robertson 2010; Van Der Wal et al., 2010). 
Typically, such geotechnical data has a high vertical resolution and is therefore suited for studying 
small-scale variability in the subsurface. This is important, since it has been shown that even sub-
metre scale heterogeneity can have an important influence on transport of matter in aquifers (e.g. 
Mallants et al., 2000; Huysmans & Dassargues 2009; Ronayne et al., 2010). 
 

 

 
          Fig. 1 Standard cone penetration testing parameters: cone resistance qc, and sleeve friction fs. 
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 Efforts in using geotechnical data for conditioning hydrogeological models are very limited 
(besides stratigraphical mapping), though gathering of such information is usually much easier and 
cheaper than doing expensive drilling campaigns. A case was published by Flach et al. (2005) who 
studied an environmental waste site of 8 km2 where 139 CPTUs (CPTs with piezometer data) were 
performed, instead of conventional borehole techniques. They categorized the CPTU parameters 
into high, medium and low conductivity classes, and upscaled it to the flow model resolution using 
a geostatistical approach; this resulted in increased groundwater model performance. 
 This paper investigates the use of several different interpretative approaches to generate 
hydrogeological parameterisations of an aquitard, thereby honouring small-scale heterogeneity. 
For this purpose we use only standard CPT data (cone resistance qc and sleeve friction fs, see 
Fig. 1) and the relationship with borehole core analyses. The resulting changes in the performance 
of an optimised groundwater flow model are discussed for the different heterogeneous 
parameterisations. Recommendations are made for including small-scale heterogeneity in 
hydrogeologic properties in a stochastic modelling approach. 
 
 
METHODS 

Site characterisation 

A detailed hydrogeological characterisation to depths of 40–50 m has been carried out in  
2008–2009 for a sub-basin of the Kleine Nete catchment in the region of Mol/Dessel, Belgium 
(Beerten et al., 2010). This site characterisation complements earlier campaigns that did not 
address spatial variability in hydraulic properties. A large amount of quantitative and semi-
quantitative information has now been collected, including borehole logs, CPTs (more than 200 
down to depths of 40 m), approximately 340 K measurements on undisturbed cores, etc. (see Fig. 
2). The hydrostratigraphy of the site is simplified in the following way: an upper aquifer with an 
average thickness ranging from 25 to 35 m, which consists of Quaternary, Mol and Kasterlee 
Sands, a very heterogeneous 5–10 m thick aquitard that is known as the Kasterlee Clay, and a 
lower aquifer with a thickness of about 150 m, consisting of the Diest, Dessel, Berchem and Voort 
Sands, with a less permeable top of a few metres at the interface with the aquitard (see Fig. 3). For 
a more detailed description, the reader is referred to Beerten et al. (2010). Since the heterogeneous 
aquitard is an important factor determining the hydrogeological system, its quantification in terms 
of hydraulic conductivity is the subject of the present study. 
 
 

 
Fig. 2 Geographical situation of the study area and site investigations, including different cored 
boreholes and several cone penetration test campaigns. A: Flanders, B: Nete basin, C: local 
groundwater model extent, and D: future waste disposal site. 
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Fig. 3 A: Hydrostratigraphy and numerical model grid of an EW profile through the study area. B: 
Upper model layer boundary conditions. C: Lower aquifer boundary conditions (Diest clayey top and 
below). 

 
 
Model performance reference case 

The groundwater model used in this paper was developed by Gedeon et al. (2011) in MODFLOW 
(Harbaugh, 2005). The upper model layer and lower aquifer boundary conditions are illustrated in 
Fig. 3. Three approaches to the parameterisation of the aquitard were initially proposed. These 
include a uniform hydraulic conductivity value across the model domain, manually delineated 
zones based in part on the aquitard thickness, and an initial CPT-based estimate derived from the 
clayey, silty and sandy soil behaviour type percentages (see e.g. Robertson et al., 1986). The 
concept of a uniform aquitard hydraulic conductivity is used as the reference case in this study. 
More details on the groundwater model concept, boundary conditions, and parameter values can be 
found in Gedeon et al. (2011) and Rogiers et al. (2010a). 
 
Alternative aquitard parameterisations 

Nine different approaches to convert the CPT data into a hydrogeological parameterisation of the 
aquitard, based on literature methods and several previous studies, were tested. The aquitard 
thickness is used as relative information in the first parameterisation to derive aquitard scale 
effective conductivities. Next, the most widely used soil behaviour type (SBT) classification by 
Robertson et al. (1986) and a recent update of it (Robertson, 2010) are further considered, as well 
as a site-specific SBT classification approach using model-based clustering (Rogiers et al., 2011). 
To assign K values to each of the discrete SBT classes, geometric mean K values were determined 
from borehole core analysis, for which CPT data were also available (see Table 1). 
 In addition to the discrete K estimates from Table 1, continuous K estimates were obtained 
from the linear model of Robertson (2010). A second linear model was derived from site-specific 
data on the cone resistance, friction ratio and hydraulic conductivity (log10(K) = –7.36 + 1.77 
log10(qc,n) + 1.18 log10(fr,n), with qc,n and fr,n the normalised cone resistance and friction ratio). In 
yet another approach continuous K values were obtained by interpolation in the CPT data space 
(Rogiers et al., 2010b,c). A final continuous K estimate is obtained by a regression with the 
lognormal transformed K data, and a back transform to obtain K values. 
 
 
Table 1 Overview of discrete CPT data classifications and corresponding K values. 
Soil behaviour type 
classification 

Class number and mean log10(K) from borehole core analysis (m/s) 

Robertson 2010 2: –6.1; 3: –6.3; 4: –5.1; 5: –4.7 
Robertson et al., 1986 3: –7.0; 4: –7.7; 5: –6.9; 6: –6.5; 7: –5.1; 8: –5.2; 9: –5.1; 11: –5.8; 12: –5.0 
Rogiers et al., 2011 1: –5.5; 2: –4.8; 3: –5.4; 4: –4.9; 5: –7.0; 6: –5.4; 7: –5.5; 8: –6.0; 9: –4.4 
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 The results of the linear site-specific estimate are plotted in Fig. 4 to illustrate the limitations 
of these models. A relationship is clearly present in the 10-8–10-4 m/s range, but the lowest values 
associated with thin, heavy clay lenses, are all overestimated in this model, as well as in the other 
approaches. 
 To overcome the problem of poorly predictable K values for heavy clay lenses, the cone 
resistance boundary energy (also called bending energy; see Costa & Cesar, 2001) was also 
included as a covariate for deriving soil classes. The approach is that of Bhattacharya & 
Solomatine (2005) where a CPT log-shape characteristic is incorporated allowing for use of expert 
knowledge as part of a machine learning CPT classification. Large excursions of this parameter are 
believed to correspond to distinct thin features, which possibly relate to the presence of heavy clay 
lenses. These excursions are coupled to the respective mean of the clay lens K distribution  
(10-9.75 m/s), while the background signal is attributed a mean value of 10-6 m/s. An overview of 
these different K estimates is given in Fig. 5 for a single CPT. 
 
 

 
Fig. 5 Overview of considered continuous (left), and discrete (right) K estimates for a single CPT-
borehole pair. (Rob2010: Robertson 2010; Rob1986: Robertson 1986; LM: linear model; Interpolation: 
K interpolation in CPT space; Clustering: model-based clustering into SBTs.) 

 
 
Upscaling and interpolation 

Simple vertical upscaling and horizontal interpolation transforming discrete CPT investigation 
points to a full parameter field was performed for incorporation into a groundwater flow model. 
Harmonic means are calculated from the CPT data (every data point represents a vertical thickness 
of 2 cm) within the aquitard domain to obtain a single value for every CPT. These values are then 
interpolated in the horizontal plain with isotropic 2D ordinary kriging. 

 Fig. 24 Linear site-specific K estimates vs measured values. 
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Inverse optimisation 
Inverse optimisation of hydrogeological parameters with UCODE (Poeter et al., 2005) was 
performed. To allow for calibration of the obtained hydraulic conductivity estimates, as well as 
converting relative information like the aquitard thickness to K values, a factor  b and bias a were 
included after standardisation of the parameter fields resulting from the upscaling and 
interpolation. The following three parameters were thus optimised in all cases: the standardised 
spatially heterogeneous logarithmic vertical conductivity field factor b, the bias a, and the overall 
upper aquifer K (one single K value is optimised for the entire upper aquifer), from which the sub-
units are derived, and idem for the lower aquifer conductivity. The aquitard logarithmic vertical 
hydraulic conductivity in each model grid is hence calculated as a + b* (the standardised 
heterogeneous parameter field). For the model performance measure, the sum of squared errors for 
86 head observations and 21 derived vertical head differences across the aquitard were used, with 
10 times more weight given to each head difference observation, since these are the most sensitive 
to the aquitard parameterisation. 
 
 

RESULTS 
The different approaches that were used are summarised in Table 2, together with the sum of squared 
errors (SSE) obtained after the model run, expressed in percentage relative to the reference case SSE. 
The corresponding aquitard parameter fields are shown in Fig. 6. All concepts performed better than 
the uniform reference case. The aquitard thickness and cone resistance boundary energy (concept 2 
and 5) did not increase the model performance much (92% and 96% of the reference case SSE). 
 For the SBT classifications, the model-based clustering of CPT data (concept 6) shows the 
best performance (44% of the reference case SSE). Both classifications of Robertson (concept 3 
and 4) perform worse. The one from 2010 seems to be much more robust, with a performance of 
65% of the reference case SSE, instead of 99% for the 1986 version. 
 However, the continuous estimates perform best, with a relative SSE of 35%, 40% and 42% 
for the normal transformed linear K estimate, the untransformed estimate, and the Robertson 2010 
estimate, respectively. The interpolation of K in the CPT data space did not contribute much to the 
model performance (92% of the reference case SSE). 
 All concepts with a SSE of less than 50% of the reference case SSE show a similar spatial 
pattern in the aquitard vertical K field. This indicates the presence of a large-scale channel-like 
structure within the Kasterlee Clay unit, with preferential deposition of fine material. 
 
 
 
Table 2 Definition of the different heterogeneous aquitard parameterisation approaches, and the sum of 
squared errors (SSE) in percentage relative to the reference case, as a model performance measure. 
Nr Definition CPT parameters used for K parameterisation Rel. SSE 
1 Uniform value; reference case None 100% 
2 Aquitard thickness Aquitard thickness 92% 
3 Robertson 2010 SBTs SBT classes + corresponding geometric K 

means 
65% 

4 Robertson 1986 SBTs SBT classes + corresponding geometric K 
means 

99% 

5 Cone resistance boundary energy Cone resistance log shape characteristic 96% 
6 Model-based clustering SBTs SBT classes + corresponding geometric K 

means 
44% 

7 Robertson 2010 K estimate Soil behaviour type index 42% 
8 Site-specific linear K estimate Normalised cone resistance and friction ratio 40% 
9 Site-specific interpolated K estimate Normalised cone resistance and friction ratio 92% 
10 Site-specific linear normal transform K 

estimate 
Normalised cone resistance and friction ratio 35% 
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Fig. 6 Different standardised log-transformed vertical K fields for the Kasterlee Clay aquitard, created 
following the approaches listed in Table 2. 

 
 
CONCLUSIONS 

Large-scale deterministic groundwater flow modelling can benefit considerably from detailed 
spatial sampling, which allows for incorporating deterministic large-scale heterogeneous 
parameter fields. This study demonstrates that standard CPT data is useful for the parameterisation 
of the hydraulic conductivity of an aquitard. 
 The model-based clustering of the CPT parameters and coupling with the site-specific K data 
proved to yield more information on the aquitard large-scale K variation than existing SBT 
classifications from the literature. Continuous estimates of K, based on the CPT data, led to even 
better model performance. The linear site-specific estimate, with normal-transformed K data, 
performed especially well. It is therefore recommended to use this type of approach for smaller-
scale modelling. These results clearly show the benefit of using a site-specific approach rather than 
existing classification diagrams or K estimates from literature. 
 The cone resistance boundary energy concept did not improve the model performance 
significantly. This indicates that it does not provide much information on a large scale, but does 
not exclude that it might indicate the presence of thin clay lenses at the small scale. 
 For a smaller scale approach, geostatistical simulation would be required in 3D. For the 
discrete classification, indicator simulation could be applied, with two K parameters per SBT class, 
using the borehole dataset for the prior distributions. For the continuous K estimates, co-simulation 
would be the best option. 
 Due to the inability to capture the clay lenses with the CPT data, additional work on the 
borehole cores is needed to derive a way to include these important features in the small-scale 
stochastic model. Moreover, the current lithostratigraphical subdivision is too coarse to apply at 
the small scale. A local variography and moving neighbourhood approach should be applied to 
exclude possible conceptual model errors concerning layer geometry and non-stationarity. 
 
 
Acknowledgements The authors are grateful to ONDRAF/NIRAS, the Belgian Agency for 
Radioactive Waste and Enriched Fissile Materials, for providing the data. Findings and 
conclusions in this paper are those of the authors and do not necessarily represent the official 
position of ONDRAF/NIRAS. 
 



The usefulness of CPTs for aquitard parameterisation 
 

47 

REFERENCES 
Anagnostopoulos, A., Koukis, G., Sabatakakis, N. & Tsiambaos, G. (2003) Empirical correlations of soil parameters based on 

Cone Penetration Tests (CPT) for Greek soils. Geotechnical and Geological Engineering 21(4), 377–387. 
Bhattacharya, B., & Solomatine, D. P. (2005) Machine learning in soil classification. Proceedings of International Joint 

Conference on Neural Networks 19, 2694–2699. 
Beerten, K., Wemaere, I., Gedeon, M., Labat, S., Rogiers, B., Mallants, D., Salah, S. & Leterme, B. (2010) Geological, 

hydrogeological and hydrological data for the Dessel disposal site. Project near surface disposal of category A waste at 
Dessel. STB-SIE(HYD) - Version 1, NIROND-TR 2009-05 E, 261. 

Costa, L. & Cesar, R. (2001) Shape Analysis and Classification: Theory and Practice. CRC Press, Boca Raton, Florida. 
Flach, G. P., Harris, M. K., Smits, A. D. & Syms, F. H. (2005) Modeling aquifer heterogeneity using cone penetration testing 

data and stochastic upscaling methods. Environ. Geosci. 12(1), 1–15. 
Gedeon, M., Mallants, D., Vandersteen, K. & Rogiers, B. (2011) Hydrogeological modelling of the Dessel site. Overview 

report. NIROND-TR 2008-15 E V2. 
Harbaugh, A. W. (2005) MODFLOW-2005, The US Geological Survey modular ground-water model—the Ground-Water 

Flow Process: US Geological Survey Techniques and Methods 6-A16, USGS, 2005. 
Huysmans, M. & Dassargues, A. (2009) Application of multiple-point geostatistics on modelling groundwater flow and 

transport in a cross-bedded aquifer (Belgium). Hydrogeol. J. 17(8), 1901–1911. 
Mallants, D., Espino, A., Van Hoorick, M., Feyen, J., Vandenberghe, N. & Loy, W. (2000) Dispersivity estimates from a tracer 

experiment in a sandy aquifer. Ground Water 38(2), 304–310. 
Poeter, E. P., Hill, M. C., Banta, E. R., Mehl, S. & Christensen, S. (2005) UCODE_2005 and six other computer codes for 

universal sensitivity analysis, calibration, and uncertainty evaluation. US Geological Survey Techniques and Methods 6-
A11, 283p. 

Robertson. P. K., Campanella, R. G., Gillespie, D. & Greig, J. (1986) Use of piezometer cone data. In: In-Situ’86 use of In-Situ 
Testing in Geotechnical Engineering, GSP 6 , ASCE, Reston, VA, Specialty Publication, SM 92, pp 1263–1280. 

Robertson, P. K. (2010) Estimating in-situ soil permeability from CPT & CPTu. In: CPT'10, Proceedings of the 2nd 
International Symposium on Cone Penetration Testing. 

Rogiers, B., Schiltz, M., Beerten, K., Gedeon, M., Mallants, D., Batelaan, O., Dassargues, A. & Huysmans, M. (2010a) 
Groundwater model parameter identification using a combination of cone-penetration tests and borehole data. In: IAHR 
International Groundwater Symposium. Valencia. 

Rogiers, B., Mallants, D., Batelaan, O., Gedeon, M., Huysmans, M. & Dassargues, A. (2010b) Geostatistical analysis of 
primary and secondary data in a sandy aquifer at Mol/Dessel, Belgium. In: 8th International Conference on Geostatistics 
for Environmental Applications, geoENV 2010 (Gent, 13–15 September 2010). 

Rogiers, B., Mallants, D., Batelaan, O., Gedeon, M., Huysmans, M. & Dassargues, A. (2010c) Caractérisation de l'hétérogénéité 
de la conductivité hydraulique à saturation au moyen d'essais de pénétration au cône. 35 èmes journées scientifiques du 
Groupe Francophone d'Humidimétrie et des TraNsferts en Milieux Poreux: Transferts en milieux poreux: Hétérogénéité 
des processus et des propriétés, GFHN 2010, Louvain-la-Neuve, 23–25 November 2010. 

Rogiers, B., Mallants, D., Batelaan, O., Gedeon, M., Huysmans, M. & Dassargues, A. (2011) Site-specific soil classification 
from cone penetration tests and borehole data: a multivariate statistical analysis. In: NovCare 2011 (Cape Cod, 9–11 May 
2011). 

Ronayne, M. J., Gorelick, S. M. & Zheng, C. (2010) Geological modeling of submeter scale heterogeneity and its influence on 
tracer transport in a fluvial aquifer. Water Resour. Res. 46(10), 1–9. 

Tillmann, A., Englert, A., Nyari, Z., Fejes, I., Vanderborght, J. & Vereecken, H. (2008) Characterization of subsoil 
heterogeneity, estimation of grain size distribution and hydraulic conductivity at the Krauthausen test site using Cone 
Penetration Test. J. Contaminant Hydrol. 95(1–2), 57–75. 

Van Der Wal, T., Goedemoed, S. & Peuchen, J. (2010) Bias reduction on CPT-based correlations. In: CPT'10, Proceedings of 
the 2nd International Symposium on Cone Penetration Testing, 2–26, 7. 


	Introduction
	Methods
	Site characterisation
	Model performance reference case
	Alternative aquitard parameterisations
	Upscaling and interpolation
	Inverse optimisation

	Results
	ConclusionS
	References

