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Abstract The European Remote Sensing Soil Water Index (ERS SWI) fields, providing spatio-temporal soil 
moisture expressions, should be able to infer groundwater dynamics. In this study, we explore the possibility 
of using them to calibrate a coupled groundwater–land surface model. We apply a brute force calibration 
procedure by running several scenarios with varying parameter values of aquifer and upper soil properties. 
Results indicate that ERS SWI time series can be used in the calibration of such groundwater models by 
indirectly tuning groundwater recharge through changing the upper soil saturated hydraulic conductivities. It 
is shown that the scenarios showing good soil moisture dynamic performances also show good performances 
of their resulting groundwater head time series. However, the discharge performance is sensitive to the 
aquifer transmissivity. Discharge observations are thus also required for a more accurate model calibration. 
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INTRODUCTION 

The current generation of large-scale hydrological models generally ignore a groundwater model 
component simulating groundwater lateral flows. Large-scale groundwater models are rare due to 
a lack of groundwater head data required for their calibration. Related to their coverage, such point 
scale groundwater head data are often so sparsely distributed that they must be interpolated. 
Consequently, large-scale groundwater modelling assessments are often complex and not accurate. 
 During the last decades, spaceborne remote sensing is increasingly being used for mapping and 
monitoring hydrological states and fluxes, such as precipitation, soil moisture, land surface 
temperature, snow cover, and evaporation and transpiration. The advantage of spaceborne remote 
sensing products is their global coverage. However, their benefits for groundwater hydrology must 
still be proven (Becker, 2006). Up to now, only the NASA GRACE (Tapley et al., 2004) satellite has 
been acknowledged as a groundwater assessment tool, specifically for detecting groundwater storage 
dynamics (e.g. Rodell et al., 2009). However, a major drawback of GRACE is its coarse resolution 
of 400 km, severely limiting its application. Groundwater hydrology is still exempt from spaceborne 
remote sensing applications (besides GRACE) because of an obvious reason: most current sensors 
are unable to penetrate sufficiently deep into the Earth to sense groundwater dynamics. Yet, Jackson 
(2002) reviewed the possibility of using a microwave sensor to estimate groundwater recharge due to 
its capacity to provide spatio-temporal surface soil moisture maps. Also, Becker (2006) argued that 
groundwater behaviours may be inferred from remotely sensed surface expressions, such as 
elevation, surface temperature and soil moisture. The latter is the focus of this study, in which the 
possibility of using a soil moisture product to calibrate a groundwater model is explored. 
 More specifically, the objective is to investigate whether a soil moisture product called the 
European Remote Sensing Soil Water Index (ERS SWI), introduced by Wagner et al. (1999), can 
be used to constrain a groundwater model. As the study area, we used the combined Rhine-Meuse 
basin (Fig. 1) that has a good coverage of ERS SWI and ample groundwater head observations that 
can be used to validate the model results. As the model, we adopted PCR-GLOBWB-MOD 
(Sutanudjaja et al., 2011), which uses as input only global datasets so that the modelling procedure 
is portable to other areas in the world. In this study, which is our first attempt to calibrate the 
model, we implemented a brute force calibration by running several scenarios with varying 
parameter values. From them, we identified the parameter set that gives the best performance. 
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Fig. 1 The Rhine-Meuse basin used as the study area: (a) A snapshot of ERS SWI (Wagner et al., 1999) 
in August 1995; (b) the aquifer classification (Dürr et al., 2005; Sutanudjaja et al., 2011) and 
parameters used in the reference scenario: KD: transmissivities, based on the global permeability values of 
Gleeson et al. (2011) and assuming the aquifer thickness equals to 50 m; Sy: specific yields, based on Freeze 
& Cherry (1979).  

 
 
MODEL STRUCTURE 

The PCR-GLOBWB-MOD 

A detailed description of PCR-GLOBWB-MOD can be found in Sutanudjaja et al. (2011). We 
briefly describe its main features and report the modifications introduced in this present paper. 
Briefly stated, PCR-GLOBWB-MOD, which has the spatial resolution of 30 arc-second (about 
1 km at the equator), is the land surface model PCR-GLOBWB (Van Beek & Bierkens, 2009) 
coupled to a MODFLOW (McDonald & Harbaugh, 1988) groundwater model. The land surface 
model conceptualizes the hydrological processes above and in two unsaturated zone soil layers (in 
which their storages are symbolized as S1 and S2 [L]), while the groundwater model contains a 
store (S3 [L]) conceptualizing deeper saturated flows.  
 
The land surface model of PCR-GLOBWB-MOD 

In the stores S1 and S2, representing the top 30 cm (thickness Z1 ≤ 30 cm) and the following 70 cm 
(Z2 ≤ 70 cm) of soil, PCR-GLOBWB-MOD includes water balance calculations on a daily basis, a 
snow module based on HBV model (Bergström, 1995), an improved sub-grid saturation variability 
Arno scheme (Hageman & Gates, 2003) and an interflow module based on Sloan & Moore (1984). 
There are water exchanges between the first and second stores, Q12 [LT-1], and between the second 
and groundwater stores, Q23 [LT-1]. Q12 and Q23 consist of downward percolation fluxes, Q1→2 and 
Q2→3 [LT-1], and capillary rise fluxes, Q2→1 and Q3→2 [LT-1], that are driven by degrees of 
saturation of both stores, s [-], calculated either as s = S/SC (where SC [L] indicates water storage 
capacities), or s = θ/θsat, (where the subscript “sat” indicates saturation and θ [-] is effective 
moisture content defined as θ = S/Z and θsat = SC/Z). If there is enough water, percolation rate 
equals unsaturated conductivity, K(s) [LT-1]. If s1 < s2, capillary rise occurs with the amount of 
Q2→1 = K2(s2)×(1−s1). K(s) is based on Campbell (1974): K(s) = Ksat×s2β+3, where β [-] is a 
parameter in the soil matric suction ψ [L] function of Clapp & Hornberger (1978): ψ(s) = ψsat×s-β. 
 In the previous PCR-GLOBWB-MOD (Sutanudjaja et al., 2011), the capillary rise from the 
groundwater store is neglected (Q3→2 = 0). In this present study, we activated it (Q3→2  ≥ 0). We 
adopted the Gardner-Eagleson approach (Gardner, 1958; Eagleson, 1978; Soylu et al., 2011) to 

(a) (b) 
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estimate the capillary rise as a function of water table position. Given the assumptions of a steady 
state condition and that the suction head at the surface is (negatively) large (i.e. dry soil surface), 
the maximum capillary rise flux rate, v [LT-1], is given as: 
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where Zgw [L] is the difference of surface level (from the digital elevation model) and groundwater 
head h [L] (from the groundwater model). Equation (1) is used to estimate the maximum Q3→2 and 
limited by Ksat,2, which is also used while the groundwater is at or above the surface (Zgw ≤ 0). 
Also, we limit that any capillary rise fluxes, including Q3→2 and Q2→1, do not result in the upper 
storage exceeding its equilibrium soil storage, Wequ [LT-1]. The form of this equilibrium profile is 
given as (Clapp & Hornberger, 1978; Koster et al., 2000):  
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where sequ [-] is the degree of saturation at a height z above the water table. The equilibrium soil 
storage Wequ is determined by integrating sequ(z) from the water table to the surface level. 
 
Local runoff and channel discharge 

The local runoff Qloc [LT-1] (from each 30 arc-second cell) consists of three components: direct 
runoff Qdr [LT-1] and sub-surface flow or interflow Qsf [LT-1] (from the land surface model part); 
and baseflow Qbf [LT-1] (from the groundwater model part, see the next sub-section). Given the 
area of each cell, A [L2], we can express the local runoff in a water volume per unit Qtot [L3T-1]: 

[ ]bfsfdrcelltot QQQAQ ++×= .  (3) 

To obtain the channel discharge, Qchn [L3T-1], we first accumulated Qtot along the drainage 
network. Then, to take account of travel time through channels, the unit hydrograph method of the 
Soil Conservation Service (SCS, 1972; Sólyom & Tucker, 2004) was used to route discharge: 
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where the subscript rt indicates the discharge after routing procedure implemented, t and (t − n) are 
the current and previous daily time steps (until N days), and f [-] are the weights (Σfn = 1) given by 
considering the time of concentration at the most distant point of the basin to reach the cell.    
   
Groundwater model 

A single layer MODFLOW (McDonald & Harbaugh, 1988) groundwater model is coupled to the 
land surface model of PCR-GLOBWB-MOD. The MODFLOW model was forced by the output 
from the land surface model, specifically the net daily recharge Q23 = Q2→3 − Q3→2 and the routed 
channel discharge Qchn,rt [LT-3] that is beforehand translated to surface water levels HRIV [L] (see 
Sutanudjaja et al., 2011). The “recharge” (RCH) package was used to introduce Q23, while the 
“river” (RIV) and “drain” (DRN) packages were used to introduce HRIV as the boundary 
conditions of the MODFLOW model. The implementation of RIV and DRN packages gives the 
possibilities to quantify flows between streams and aquifers, symbolized as −(qRIV+qDRN) [LT-1] 
(the negative sign “−” is used as MODFLOW assumes a positive sign for flows entering the 
aquifer). The amount of −(qRIV+qDRN), which depends on the difference between h and HRIV, 
is the main component of the baseflow Qbf, especially for channels in flat sedimentary pockets 
where groundwater flows are slow. However, the magnitude of –(qRIV+qDRN) is too small to 
satisfy the baseflow originated from mountainous areas, where main flow sources often consist of 
many springs tapping groundwater located higher up in valleys (and feeding the head-water of 
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tributaries to main rivers). To include this fast component, we assumed that the groundwater above 
the flood plain is drained based on the linear reservoir concept. Hence, the total Qbf is: 

( ) ( )fpl3,bf qDRNqRIV SJQ ×++−=  (5) 

where J [T-1] is a reservoir coefficient parameterized based on Kraaijenhof van de Leur (1958) and 
S3,fpl [L] is the groundwater storage above the flood plain and calculated as:  

( ) fplfplfpl3, BUFFDEM,0max SyhS ×+−=  (6) 

where DEMfpl [L] and BUFF [L] are the assumed flood plain elevation and storage buffer below 
the flood plain that can still contribute to baseflow, while Syfpl [-] is the assumed specific yield. As 
a consequence of incorporating this fast-response flow component – represented by the second 
term of equation (5) – the water balance of the model must be closed by subtracting this 
component from the input of the MODFLOW recharge package, RCHinp [LT-3]: 

( ) cellfpl3,23inpRCH ASJQ ××−=  (7) 

Note all states and fluxes of this version of PCR-GLOWB-MOD are on a daily basis. We used an 
explicit scheme in equations (1)–(7), for which previous day values of h and −(qRIV+qDRN) were 
used. 
 
 
MODEL CALIBRATION/EVALUATION 

ERS Soil Water Index, discharge and head data 

Wagner et al. (1999) derived ERS SWI time series from the ERS Surface Soil Moisture (SSM) 
time series, which are retrieved 3–4 times per week. By employing an exponential low-pass filter 
to SSM time series, SWI time series were derived and provided in relative units (0–100%), 
representing the first metre soil moisture contents. SWI time series are available at 25–50 km and 
10 day resolutions. However, we resampled them to 30 arc-minute (50 km at the equator) and 16 
day resolutions to reduce the number of missing values that usually occur during the winter.  
 In this research, we compared the time series of the modelled saturation degree of the (entire) 
upper soil storage to the time series of ERS SWI. The saturation degree from the model, presented 
in the relative unit (0–100%), is simply calculated as s12 [-] = [ S1+S2]/[SC1+SC2]. Comparisons are 
performed at the same spatial (30 arc-minutes) and temporal resolution (16 days). As a measure of 
likeliness, we considered the cross-correlation coefficient – symbolized as ρSM – between SWI and 
s12 time series. At this stage, we did not investigate the bias between them due to the discrepancy 
in the reference values. While the modelled s12 values range from zero (0%) to full saturation 
(100%), SWI values are assumed to be between wilting level (0%) and field capacity (100%), 
according to their product documentation (http://www.ipf.tuwien.ac.at/radar/index.php?go=ascat). 
 Besides evaluating the soil moisture, we also compared the calculated discharge Qchn,rt time 
series to the observation at two downstream locations: Lobith (Rhine) and Borgharen (Meuse). In 
both points, we determined the Nash & Sutcliffe (1970) efficiency coefficients in two ways: (1) 
using real discharge values (NS); and (2) using their logarithmic values (NS_LOG). While the first 
is to evaluate discharge peaks and high-flow events, we used the latter as a performance indicator 
of baseflow components and low flows. For verification, the modelled and observed groundwater 
head time series were also compared in >5000 stations. In each station, we calculated the 
correlation coefficient between modelled and observed head time series – symbolized as ρHEAD. 
 
Model parameters and calibration strategies 

The model was simulated for the period 1985–1999. We implemented a brute force calibration that 
may be considered a step-wise calibration procedure consisting of the two following steps. 
 As the first step, we ran 16 scenarios (see Table 1) with varying aquifer transmissivities KD 
[L2T-1] and exponents b [-] of the Arno scheme. The former is one of the MODFLOW parameters, 

http://www.ipf.tuwien.ac.at/radar/index.php?go=ascat
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while the latter, which controls the partitioning of rainfall into direct runoff and infiltration to the 
soil, is defined in the land surface model. From the parameter b, it is expected that, for a given soil 
wetness, more direct runoff (and less infiltration) is produced if higher b values are introduced. 
Table 1 lists the (uniform) pre-factors of all scenarios, arbitrarily chosen and used to multiply the 
parameters of the reference scenario. For the parameters of the reference scenario (A), we adopted 
the values used in the previous PCR-GLOBWB-MOD (Sutanudjaja et al., 2011), except for 
aquifer transmissivities, KD, and specific yields, Sy [-]. For KD values, we referred to Gleeson et 
al. (2011) who attributed the global lithological map of Dürr et al. (2005) with the geometric mean 
permeability of each lithology class in the map. For this study, the map used and its attribute 
values are given in Fig. 1(b). Note that, compared with the original map of Dürr et al. (2005), we 
simplified the number of classes into five and performed a series of corrections to include small 
aquifer structures and to correct the position of large aquifer bodies (see Sutanudjaja et al., 2011). 
For Sy, the values were based on Freeze & Cherry (1979).  
 For the second calibration step, we identified one best scenario (based on ρSM, NS and 
NS_LOG) from the 16 scenarios defined in the first step (Table 1) and kept its KD and b values. 
Next, we performed 35 scenarios (Table 2) with varying values of Sy, Ksat and Z. 
 
 
RESULTS 

Table 1 lists the performance indicators (ρSM, NS and NS_LOG) during the first calibration set-up. 
The performance values are given in the (entire) basin scale-average values calculated by using the 
cells’ areas as weight factors. In Table 1 we observed varying discharge performances measured 
by NS and NS_LOG. In terms of ρSM, all scenarios unfortunately show similar performance. 
Consequently, it is difficult to determine the optimal values of KD and b. It indicates that we 
should not only rely on ERS SWI time series while calibrating such a model. Other state variables 
and observation data (such as discharge) are definitely needed in order to calibrate models.    
 
 
Table 1 Scenarios in the first step of calibration. 

Code KD b ρSM NS NS_LOG 
Rhine Meuse Rhine Meuse 

A 1 1 0.59 0.44 0.54 –0.10   –5.57 
B 1 0.01 0.58 0.52 0.52 –0.05   –5.59 
C 1 0.1 0.58 0.51 0.52 –0.06   –5.60 
D 1 1.5 0.59 0.39 0.54 –0.11   –5.51 
E 0.1 1 0.59 0.43 0.47   0.45   –1.17 
F 0.1 0.01 0.58 0.48 0.43   0.52   –1.03 
G 0.1 0.1 0.58 0.48 0.43   0.51   –1.05 
H 0.1 1.5 0.59 0.40 0.48   0.42   –1.22 
I 0.5 1 0.59 0.48 0.55   0.18   –3.68 
J 0.5 0.01 0.58 0.56 0.52   0.26   –3.58 
K 0.5 0.1 0.58 0.55 0.52   0.25   –3.60 
L 0.5 1.5 0.59 0.44 0.55   0.15   –3.69 
M 10 1 0.59 0.28 0.39 –0.85 –10.45 
N 10 0.01 0.58 0.34 0.36 –1.15 –11.13 
O 10 0.1 0.58 0.24 0.36 –1.12 –11.08 
P 10 1.5 0.59 0.24 0.40 –0.74 –10.07 
* Tables 1 and 2 list the uniform pre-factors (KD, b, Sy, Ksat, Z) used to multiply the parameters of the 
reference scenario A and the model performance indicators (ρSM, NS, NS_LOG).  
KD, transmissivities; b, Arno Scheme exponent; Sy, specific yield; Ksat, upper soil saturated conductivities; 
Z, upper soil depths; ρSM, correlation coefficients between calculated soil moisture and ERS SWI time 
series; NS and NS_LOG, Nash & Sutcliffe (1970) efficiency coefficients calculated using the absolute and 
logarithmic values of discharges.  
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Table 2 Scenarios in the second step of calibration. 

Code Sy Ksat Z ρSM NS NS_LOG 
Rhine Meuse Rhine Meuse 

F-101 0.75 0.01 0.75 0.48 –3.87 –2.00   0.11 –0.17 
F-102 0.75 0.01 1 0.47 –3.81 –1.96   0.10 –0.17 
F-103 0.75 0.01 1.25 0.45 –3.78 –1.95   0.10 –0.17 
F-111 0.75 0.1 0.75 0.60   0.08   0.17   0.50 –0.15 
F-112 0.75 0.1 1 0.58   0.22   0.33   0.49 –0.22 
F-113 0.75 0.1 1.25 0.57   0.26   0.41   0.46 –0.37 
F-121 0.75 1 0.75 0.56   0.35   0.38   0.52 –0.81 
F-122 0.75 1 1 0.58   0.46   0.43   0.53 –0.86 
F-123 0.75 1 1.25 0.60   0.50   0.45   0.52 –0.94 
F-131 0.75 10 0.75 0.42 –0.62 –0.24   0.35 –1.63 
F-132 0.75 10 1 0.48 –0.17   0.07   0.35 –1.84 
F-133 0.75 10 1.25 0.50   0.05   0.17   0.34 –1.99 
F-201 1 0.01 0.75 0.48 –3.89 –2.01   0.09 –0.26 
F-202 1 0.01 1 0.47 –3.83 –1.98   0.08 –0.26 
F-203 1 0.01 1.25 0.45 –3.79 –1.96   0.08 –0.26 
F-211 1 0.1 0.75 0.60   0.09   0.18   0.48 –0.28 
F-212 1 0.1 1 0.58   0.22   0.33   0.47 –0.35 
F-213 1 0.1 1.25 0.57   0.25   0.40   0.44 –0.51 
F-221 1 1 0.75 0.56   0.40   0.40   0.51 –0.98 
F 1 1 1 0.58   0.48   0.43   0.52 –1.03 
F-223 1 1 1.25 0.60   0.51   0.44   0.51 –1.12 
F-231 1 10 0.75 0.42 –0.41 –0.10 –0.41 –1.84 
F-232 1 10 1 0.47 –0.03   0.13 –0.03 –2.03 
F-233 1 10 1.25 0.50   0.14   0.20   0.14 –0.17 
F-301 1.25 0.01 0.75 0.48 –3.91 –2.03 –3.91 –0.32 
F-302 1.25 0.01 1 0.47 –3.85 –1.99 –3.85 –0.33 
F-303 1.25 0.01 1.25 0.45 –3.90 –2.18 –3.90 –0.36 
F-311 1.25 0.1 0.75 0.60   0.09   0.19   0.09 –0.39 
F-312 1.25 0.1 1 0.58   0.22   0.33   0.22 –0.48 
F-313 1.25 0.1 1.25 0.57   0.24   0.40   0.24 –0.65 
F-321 1.25 1 0.75 0.56   0.43   0.42   0.43 –1.15 
F-322 1.25 1 1 0.58   0.50   0.44   0.50 –1.20 
F-323 1.25 1 1.25 0.60   0.51   0.44   0.51 –1.29 
F-331 1.25 10 0.75 0.42 –0.31 –0.08 –0.31 –2.03 
F-332 1.25 10 1 0.47   0.57   0.17   0.57 –2.21 
F-333 1.25 10 1.25 0.50   0.20   0.23   0.20 –2.35 
* See the footnote below Table 1. 
 
 

       
 

      
Fig. 2 Cross correlation fields between the calculated soil moisture and ERS SWI time series (ρSM) on 
the upper row; and between the calculated and measured groundwater head time series (ρHEAD) on the 
bottom row: (a) from the scenario F-202 (ρSM and ρHEAD in the basin average values equal to 0.47 and 
0.16); (b) from the scenario F-212 (ρSM and ρHEAD in the basin average values equal to 0.58 and 0.44); 
and (c) from the scenario F (ρSM and ρHEAD in the basin average values equal to 0.58 and 0.40). 

(c) (b) (a) 
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 From Table 1, in terms of discharge performance measured by NS, most of the scenarios, except 
the ones with high transmissivities (KD = 10KDref, with the subscript “ref” indicating the reference 
scenario), show good performances, both in Rhine and Meuse (NSRhine ≥ 0.39 and NSMeuse ≥ 0.43). 
However, in terms of NS_LOG, only scenarios with low transmissivities (KD = 0.1KDref) show 
reasonable discharge performances (NS_LOGRhine ≥ 0.43 and NS_LOGMeuse ≥ –1.22). Hence, for the 
second calibration step, we used the scenario that has low transmissivities (KD = 0.1KDref). 
Unfortunately, determining the optimal b is difficult. From Table 1, given the same KD, scenarios 
with varying values of b provide similar performances of NS and NS_LOG. However, because we 
wanted to explore the influence of some other parameters (i.e. Sy, Ksat and Z), but limited the number 
of runs for computational reasons, we arbitrarily fixed b at 0.01 (following the scenario F).  
 For the second calibration step – summarized in Table 2 – in which we varied Ksat, Z and Sy, 
we identified that Ksat is the most sensitive parameter to the model performance indicators, while 
our variations of Z and Sy hardly influence them. Our variation of Ksat in Table 2 altered not only 
the discharge indicators NS and NS_LOG, but also the soil moisture performance indicator ρSM. It 
indicates the possibility to calibrate this parameter by evaluating the model results to SWI time 
series. In terms of ρSM, the scenarios with Ksat = 0.1Ksat,ref and Ksat = Ksat,ref are the best ones. 
 Figure 2 shows the fields of ρSM and ρHEAD, from three scenarios: F-202, F-212 and F. It shows 
that the scenarios that show good soil moisture performances also show good performance of their 
resulting groundwater heads. This shows the possibility of using ERS SWI to calibrate the model, 
but not directly through optimization of aquifer parameters (e.g. KD), but by tuning groundwater 
recharge through changing the upper soil saturated conductivities (Ksat). 
 
 
CONCLUSIONS 

Despite the limitations of this study, we have shown the possibility to determine a parameter value 
(i.e. Ksat) of a coupled groundwater–land surface model by comparing modelled soil moisture to 
ERS SWI time series. However, we also acknowledged that we were not able to fulfil the initial 
objective of our study, which is to calibrate the model by using only ERS SWI time series. Other 
datasets, such as discharge measurements (and possibly GRACE observations) should be included 
to calibrate the aquifer parameter (i.e. KD). These issues are subject to further study. 
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