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Abstract Groundwater recharge is the key driver for groundwater flow and resulting transport at the 
catchment scale, but it is difficult to quantify. Hydrological models provide an option for evaluating an 
estimate of groundwater recharge. They can generally be used to estimate groundwater recharge rates over 
large spatial and temporal scales, and they can be applied for current or future scenario analysis as climate or 
land use changes. However, a serious limitation of current model applications is the non-availability of data 
and input parameters. In order to improve the reliability and the performance of hydrological models, in this 
study a general approach for the assessment of performance in the simulation of the groundwater recharge 
estimation is proposed. A so-called global uncertainty analysis is developed as a tool to evaluate the 
performance of the models. A global sensitivity analysis is defined and used as a complementary tool to find 
the most important sources of uncertainty. The procedure can take various sources of uncertainty into 
account, i.e. input data, parameters, either in scalar or spatially distributed form. This procedure is iterated in 
a loop for improving the performance of the models and to optimize the resource allocations. As a test 
example, the procedure is applied at an experimental site in northern Germany on a field scale, using the 
SWAP model, a 1D physical-based hydrological model. Further research will involve other spatially 
distributed hydrological models of different complexity and application on larger spatial scales. 
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INTRODUCTION 

The estimation of groundwater recharge, here taken as the vertical water flux below the root zone, 
is a critical issue for water resources assessment and for contaminant transport. Location and 
timing of groundwater recharge is dominated by several factors such as climate, geomorphology 
(including topography, vegetation and soil) and geology. Due to the complexity of the system and 
the interactions of all the compartments involved, the process is characterized by high spatial and 
temporal variability; therefore, a correct quantification of groundwater recharge is still a challenge 
for the hydrology sciences (Scanlon et al., 2002). 
 When the groundwater recharge is dominated by deep percolation from the unsaturated zone, 
a modelling approach is a common technique used to estimate the recharge in response to the 
meteorological forcing and the characteristics of the system. Recent advances in computer 
technology and computer codes made long-term simulations more feasible. A variety of 
approaches are now available, e.g. bucket models (e.g. Facchi et al., 2004), quasi analytic 
approaches (Simmons & Meywer, 2000) and numerical solution of Richards’ equation (e.g. Tiktak 
et al., 2002; Twarakavi et al., 2008). 
 However, recharge estimation based on unsaturated-zone modelling may be highly uncertain 
due to the large amount of information needed to run the models. The data availability for setting 
up models is still indeed a critical issue and many limitations on the applicability of these models 
are considered in practical studies (e.g. Sivapalan, 2003). However, the assessment of the model 
performance is mostly carried out based on just the uncertainty of the soil parameters or with a 
one-at-a-time (OAT) method, so called as each factor is perturbed in turn, while keeping all other 
factors fixed at their nominal value (e.g. Jimenez Martinez et al., 2010). Even if these studies help 
the understanding of the system and the model behaviour, the conclusions in most of the cases are 
quite site specific and not useful for a global assessment of the model. Considering a more general 
approach for practical application, all the sources of uncertainty (i.e. input, parameters and model 
structure), have to be considered (Beven, 2007). 
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 In this paper, a general probabilistic framework for the uncertainty and sensitivity analysis of 
hydrological models is used considering the problems mentioned above. In this framework all the 
sources of uncertainty can be explicitly considered without any constraint, e.g. using spatially 
distributed parameters or input or different models. This framework is based on the approach 
proposed by Crossetto & Tarantola (2001) and recently revisited in Lilburne & Tarantola (2009). 
In this paper, the framework is used with SWAP model (Kroes & Van Dam, 2003), a 1D 
physically-based hydrological model, for the estimation of the groundwater recharge in a cropped 
field located in Bornim (Brandenburg, Germany). However, the proposed framework is readily 
extendable to a wide variety of distributed hydrological modelling applications. 
 
 
METHODS 
The general probabilistic framework 
The general framework proposed for the uncertainty and sensitivity analysis is based on a Monte-
Carlo simulation and the variance-based approach (Saltelli et al., 2006). Here, once the 
distributions of the input factors are defined, the model runs are iterated for each possible 
realization created and the variance of the models output is calculated. The sensitivity indexes 
considered are the so-called First sensitivity index (Si) and Total sensitivity index (ST) as follows: 
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where the first index is the ratio between the variance of the mean output Y conditioned by all the 
possible Xi input values and the total variance of the output V(Y). The higher Si is, the higher the 
importance of the input factor i is. In the case of the second index, this ratio ST considers variance 
of the mean output Y is conditioned by all the possible input values except Xi. The lower ST, the 
lower the importance of the factor Xi is. Differences in the two indexes indicate the interaction of 
the input factors considered in the analysis. For more details see also Saltelli et al. (2000). 
 In the specific framework proposed here, all sources of uncertainty in the study can be 
considered, because the sensitivity analysis is based on the simple introduction of a trigger factor 
used to randomly select the samples that have to be considered. This approach was applied for 
example by Crosetto & Tarantola (2001), who proposed the use of a sensitivity analysis of a binary 
input to “switch” uncertainties on and off at the same rate (i.e. for N/2 runs, the switch is set to off 
and for the remaining N/2 runs it is set to on), allowing their relative importance to be determined. 
The same approach was applied by Lilburne et al. (2003), who associated sampling values from a 
discrete, uniformly-distributed input, with sample realizations from a pre-generated sequence of 
1000 realizations of a set of soil maps. This enabled a complex correlated description of variability in 
soil profile data to be simulated, which was not possible with other more common approaches. 
 The estimation of the sensitivity indexes is subsequently done based on the variance 
decomposition proposed by Sobol (2001) and further developed by Saltelli (2002). As shown by 
Tang et al. (2007), this method yields more robust sensitivity rankings than other measurements 
such as the analysis of variance or regional sensitivity analysis. Moreover, with this method an 
analytical model to link input and output is not required, because the estimation of the sensitivity 
indexes does not depend on the order in which the realizations are associated with the scalar input 
values. For more details about the method see Lilburne & Tarantola (2009). 
 
Experimental site and data collected 

The model application is conducted for a cropped flat field of 30 ha located in Bornim (Brandenburg, 
Germany), where surface runoff can be neglected and the 1D vertical fluxes play the most important 
role. The area situated 40 m a.s.l. is characterized by loamy-sand soil (Gebbers et al., 2009), a mean 



A global uncertainty and sensitivity procedure for the assessment of groundwater recharge 
 

73 

annual precipitation of 595 mm and minimum and maximum temperatures of –15ºC (February) and 
30ºC (July), respectively (Meteorological Station Potsdam Telegrafenberg, Germany). The study was 
conducted for May–August 2011, and is focused on the temporal variability of evapotranspiration, 
soil moisture in the root zone, and recharge simulated by the model. The model performance is 
evaluated considering the variance of the model outputs due to evapotranspiration and recharge. The 
performance of the soil moisture dynamic simulated was compared with soil moisture measured by 
Theta Probes (Delta-T Devices, Cambridge, UK) installed in the field at three depths (0, 20 and 40 
cm). In this case the mean error, ME (-), between simulated and measured mean soil moisture in the 
root zone (50 cm) is calculated for the period considered. For more details of the experimental site 
see Rivera Villarreyes et al. (2011). During the season, monitoring activities were also conducted in 
order to collect the input and parameters to set up the model and to define the uncertainty in the data 
available. In particular, meteorological data (i.e. temperature, air humidity, solar radiation, wind 
velocity and precipitation) were available from the Meteorological Station Potsdam Telegrafenberg. 
However, the station is located approximately 6 km east of the experimental site. Direct 
measurements in the field were also collected during the season and compared to the reference in 
order to define the range of uncertainty for each variable. In 2011 the field was cropped with 
sunflowers. Crop parameters to set up the model were based on Allen et al. (1998). Field 
measurements of crop height Hc (cm) were conducted in the field biweekly to define the uncertainty 
on the parameter presented in the literature. A similar range on the uncertainty of the other crop 
parameters is necessary to set up the model, i.e. Leaf Area Index LAI (-) and Root depth Rd (cm), 
were fixed on the basis of this variability. Direct soil samples were also sampled in the field at 
different depths, for analysis of the soil texture and bulk density. Then Pedotransfer Functions 
(PTFs) were used for the estimation of the soil hydraulic parameters in the model. In particular, 
considering the ranges of the soil texture in the field, a homogeneous soil profile was considered and 
PTFs of Zacharias & Wessolek (2007) and PTFs of Rawls & Brakensiek (1989) were applied for the 
estimation of the parameters of the soil retention curve and for the estimation of the hydraulic 
conductivity Ksat (cm/d), respectively. The uncertainty of each parameter was then fixed by 
considering a range in the parameters estimated as proposed by the authors of the PTFs. At the 
experimental site, the groundwater level is ~5 m below the surface as suggested by information from 
the State Environmental Agency based on a groundwater well nearby. The interaction between root 
zone and groundwater can be neglected and free drainage was set as the bottom boundary condition 
without introducing an error. Finally a warm-up period was used to eliminate the sensitivity to the 
initial conditions. Table 1 shows nominal values and ranges of uncertainty introduced for each of the 
input data and parameters. 
 
 
Table 1 Ranges of uncertainty defined for the input factors. Weather data: random error introduced in the 
time series; Crop parameters: mean and random error introduced at maximum stage; Soil: mean and random 
error of parameters of Van Genuchten eq. (θr and L were fixed to 0.05 (–) and 0.5, respectively). 
 Parameter Range   Parameter Mean CV 
Daily 
weather 
data (W) 

Air Temperature (°C) ± 1.0 Crop 
parameters 
(C) 

Hc max (cm) 130 8% 
Air humidiy (hPa) ± 0.2 Rd max (cm) 40 8% 
Wind (m/s) ± 1.0 LAI max (–) 2.5 8% 
Glob.Radiation (W/m2) ± 20  
Rain (mm) ± 2.0 Soil 

parameters 
(S) 

θs (–) 0.38 5% 
 n (–) 1.26 1% 

α (cm-1) 0.08 12% 
Ksat (cm/d) 200 40% 

 
Codes and model set up 

The study is conducted via SWAP model, a widely used 1D physically-based hydrological model 
of soil moisture dynamics in unsaturated soils based on the Penman-Monteith and Richards’ 
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equations (Kroes & Van Dam, 2003). In this study the uncertainty in the model structure is not 
explicitly considered comparing, for instance, models of different complexity (e.g. Baroni et al., 
2010). However, the framework is applied with the final goal to optimize the monitoring activities 
and increase the model performance for groundwater recharge estimation. 
 Considering the monitoring activities described above, the sources of uncertainty were 
grouped in three main classes: meteorological data (W), crop parameters (C) and hydraulic soil 
parameters (S). Taking into account the range of uncertainty defined for each of the sources, a 
number of realizations ni were defined, which cover the space of variability introduced. In 
particular, 64 realizations of meteorological data were created, 64 realizations of daily series of 
crop parameters were considered (i.e. LAI, Hc and Rd) and 64 realizations of hydraulic soil 
properties were generated. The realizations were sampled from the range defined in Table 1 and 
considering the correlation between parameters as detected in the measurements. 
 The simulations were run using a sampling number N = 512. In concordance to the methods pro-
posed in Saltelli (2002), a total number of runs NR = N (k+2) = 2560 was carried out, where k = 3 is 
the number of input factors (i.e. W, S, C). MatLAB codes were developed ad hoc with the SimLAB 
library (SimLAB, 2009) to run the Monte Carlo analysis and calculate the sensitivity indexes. 
 
 
RESULTS 

Uncertainty and sensitivity analysis of soil moisture 

The results of the simulation of the mean soil moisture of the root zone (50 cm) in comparison 
with the measurements collected in the field (MR2) show a general agreement also without a 
specific model calibration (Fig. 1) underlining the good capability of the model to simulate the 
process. However, in the first period, when soil is relatively dry due to the high evapotranspiration 
rate (results not shown) and the low precipitation, the model tends to overestimates the process. In 
contrast, after intensive precipitation events (from DoY ~210), the model tends to underestimate 
the soil moisture measurements. 
 As expected, the sensitivity analysis shows that the soil properties (S) play a major role in the 
variability of the simulation results. Thus, these parameters are of higher importance for 
calibrating or improving the model performance in the simulation of the soil moisture dynamics. 
 
 

 
Fig. 1 Measured and simulated mean soil moisture of the root zone (50 cm) and sensitivity indexes. 



A global uncertainty and sensitivity procedure for the assessment of groundwater recharge 
 

75 

However, if we look in more detail, the sensitivity analysis at daily time steps, the relative 
importance of the uncertainty of the weather data (W) and crop parameters (C) also become more 
important in relation to crop growth in particular for dry conditions. Finally, no particular 
differences are detected between First and Total sensitivity indexes, except during the highest 
precipitation event (DoY = 210) underlying a general independence of the input factors (results 
now shown). 
 
Uncertainty and sensitivity analysis of evapotranspiration and groundwater recharge 

Figure 2 shows the histograms of the cumulative evapotranspiration (ETa) and of the groundwater 
recharge (Qbot) below the root zone (50 cm) with the related sensitivity indexes. In these results, 
the uncertainty in the estimation of the evapotranspiration is relatively low, with mean value and 
range of ~270 and ±30 mm, respectively. However, the bottom fluxes are quite limited in the 
period considered, but the relative error becomes more important with mean value and range of 
~25 ±30 mm, respectively. For both processes the ranges are comparable, suggesting that the 
errors in the model simulation can compensate each other and cannot be captured by the mean soil 
moisture. Moreover, it is important to notice that the range of uncertainty is much higher than the 
error introduced in the precipitation for the same period considered (i.e. ±6 mm, May–August). 
Further, it is interesting to see that soil properties (S) for these processes are not important sources 
of uncertainty, i.e. first sensitivity index is almost zero. This means that a better calibration of the 
soil properties will not improve the performance of the simulation of these processes, while for 
this goal reduction of sources of uncertainty has to be done to the weather condition (W) and of the 
crop parameters (C), respectively. Finally, differences between first and total indexes are detected 
for the groundwater recharge underlining the interaction between the input factors. 
 
 

  
Fig. 2 Histograms of the cumulative values of the evapotranspiration (ETa) and vertical flux of water 
below 50 cm, indicative for potential groundwater recharge (Qbot). Both simulated by the model in the 
period considered. On the right sensitivity indexes are plotted. 

 
 
 In order to analyse in more detail the uncertainty of groundwater recharge, the results of the 
water fluxes at different depths are also compared (Fig. 3). Due to the relatively low precipitation 
rate in the period considered, the water fluxes already become negligible at a depth of 150 cm. 
However, the analysis can be easily extended in other cases characterized by deeper percolation 
and it is presented here as an example. From these results it is evident that the uncertainty related 
to the weather data (W) plays a major role in the uncertainty on the process also considered at a 
depth of 1.0 m. However, the relative importance of the soil parameters (S) tends to increase in 
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opposition to the crop parameters (C). In such a way, with this analysis it is possible to understand 
at which depth the relative importance of the uncertainty in the upper boundary condition (W and 
C) becomes negligible. However, this could be analysed in more detail considering a longer 
monitoring period. 
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Fig. 3 Cumulative simulated vertical water flow indicative for potential groundwater recharge (Qbot), 

evaluated at different depths and related first sensitivity indexes. In the first diagram mean and standard 
deviation are shown. 

 
 
CONCLUSIONS 

The probabilistic framework used in this study is a useful approach for a global assessment of 
model performance and to identify the major sources of related uncertainty. Such information can 
be useful for purposes of model improvement, parameter estimation, or model simplification. This 
approach can in fact be used in a loop in order to optimize further activities that could improve the 
performance of the output considered. It can handle all the sources of uncertainty e.g. for input, 
distributed parameters or models structure and it can be easily implemented. 
 In the specific analysis, the framework was used for the assessment of groundwater recharge 
using the Richards-based hydrological model SWAP. The main conclusions are summarized as 
follows: 
– Soil moisture pattern is quite well simulated by the model, but with a tendency to 

overestimate it during dry conditions and underestimate during wet conditions. 
– Improvement in the simulation of the soil moisture could be done as expected by calibration 

of soil properties (S). These parameters have in fact the highest sensitivity index. Anyway the 
analysis at daily time steps also underlines that the relative importance of the other factors 
changes in time. 

– Evapotranspiration and the bottom flux at 50 cm depth simulated by the model show an 
uncertainty of the same order of magnitude i.e. ±30 mm. These errors can compensate each 
other and cannot be captured by the error in the simulation of the mean soil moisture. 

– The major sources of uncertainty related to the estimation of evapotranspiration and of 
vertical water fluxes at 50 cm and 100 cm are the weather data (W) and the crop parameters 
(C). Thus, an improvement of the model by calibrating the soil properties will not reduce the 
uncertainty in these outputs. However, an improvement can be achieved by focusing the 
further activities in the reduction of the uncertainty at the upper boundary condition, e.g. 
installing a new meteorological station close to the experimental site or improving the 
extrapolation of the existing weather data. 

– Due to the low precipitation rate in the monitoring period, the bottom fluxes were negligible 
already at the depth of 150 cm. However, the analysis shows an example of how to define at 
which depth the uncertainty in the upper boundary condition could become less important in 
comparison with the definition of the soil parameters. Further analysis will be conducted by 
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considering a longer monitoring period in order to analyse the relative importance also when 
deeper percolation is considered that should result in actual groundwater recharge. 

– Finally, a finer analysis with this probabilistic framework can treat each set of soil 
parameters, crop parameters or weather data separately, allowing determination of which one 
could be more important. This was not the goal of the present study but it could be an 
important issue in further research. 
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