
Models – Repositories of Knowledge 
 (Proceedings ModelCARE2011 held at Leipzig, Germany, in September 2011) (IAHS Publ. 355, 2012). 

  
 

Copyright  2012 IAHS Press 
 

78 

Reducing hydrograph uncertainty through subsurface 
characterization  
 
STEVEN B. MEYERHOFF & REED M. MAXWELL  

 Colorado School of Mines, Hydrologic Science and Engineering Program, Integrated GroundWater Modelling Centre, 
1516 Illinois Street, Golden, Colorado, USA  
smeyerho@mines.edu 
 
Abstract Subsurface heterogeneity in saturated hydraulic conductivity is one of the largest sources of 
uncertainty in hydrology and hydrogeology. However, recent work has demonstrated that uncertainty in 
hydraulic conductivity can also impart significant uncertainty in runoff processes. Here, the role of site 
characterization in reducing hydrograph uncertainty and bias is demonstrated numerically. A fully integrated 
hydrologic model is used in a hypothetical experiment where a control hillslope is generated using 
correlated, Gaussian random fields. Direct measurements of hydraulic conductivity at varying density are 
obtained from this control simulation and assimilated into stochastic transient simulations. The hydrographs, 
resulting from integrated flow simulations for each realization, are shown to much more accurately match 
the control. Data assimilation resolves large-scale features in surface ponding and saturation. This implies 
that substantial reduction in hydrograph uncertainty may be reached through site characterization. 
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INTRODUCTION 

We use a fully-integrated hydrologic model, ParFlow (Ashby & Falgout, 1996; Jones & 
Woodward, 2001; Kollet & Maxwell, 2006), that simultaneously solves for variably saturated 
subsurface flow and surface overland flow using fine-scale, structured, geostatistical heterogeneity 
to determine how saturated hydraulic conductivity assimilation affects runoff predictions. We 
adopt a Monte Carlo approach where a large number of subsurface realizations based upon 
assimilated data, represent our uncertainty about the spatial location of hydraulic conductivity 
values, and are used to generate parameter values for this integrated flow model and distributions 
of outflow. We present how assimilated saturated hydraulic conductivity data reduces subsurface 
uncertainty and how this reduction propagates to runoff prediction. 
 This work presented here seeks to answer the following research questions: 
(1) Does a reduction in the subsurface hydraulic conductivity uncertainty propagate to runoff? 
(2) Does subsurface hydraulic conductivity conditioning differ for Hortonian versus Dunne flow 

dominated systems? 
(3) Does reducing subsurface permeability uncertainty propagate to other runoff mechanisms 

such as saturation and pressure head? 
(4) Do we see the same structural errors both temporally and spatially for baseflow and overland 

flow? 
 An idealized hillslope with uniform, unit rainfall was specified to specifically isolate the role 
of the spatial distribution of and uncertainty in hydraulic conductivity on outflow. Outflow results 
were averaged over the ensemble and descriptive statistics were calculated. Two different water 
table initializations were used to isolate differences in the role of heterogeneity on runoff 
production for subsurface dominated flow (Dunne flow) and overland flow (Hortonian flow) cases. 
This work (1) addresses the uncertainty in hydraulic conductivity by assimilating known data into 
ensembles of model simulations; and (2) uses the assimilated data to address how known 
information reduces the uncertainty in runoff. The basic approach is as follows: a fully-3D 
hillslope with Gaussian, correlated-random heterogeneity fields is used to simulate runoff under 
Hortonian (overland-only) and Dunne (mixed overland-subsurface); a single case is used as a 
control scenario where known data is assimilated into ensembles of realizations for each case 
(overland flow, and mixed overland-subsurface flow), and these ensemble simulations are used to 
address the uncertainty in hydraulic conductivity and its role on runoff mechanisms.  
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METHODS 

Data analysis 

In this study we look at outflow, land surface saturation and pressure head. To represent the 
differences and uncertainty between the control scenario and the conditional cases we use the 
residual, and root mean squared residual.  
 
Non-dimensionalization  

A series of non-dimensional variables are used to generalize the simulation results and to make it 
easier for comparison studies. The variables used here are the same as those developed in Maxwell & 
Kollet (2008). The primary variable that is non-dimensionalized is qr′ which is the rain rate (Qrain) 
normalized by the geometric mean of permeability in the domain, Kg. This variable is a basis for 
analysis for the baseflow and overland cases. A non-dimensional time, t′, is also used, which is 
defined as the total time normalized by the time of rain application. The model dimensions were also 
non-dimensionalized, as well as Manning’s coefficient. These can be seen below: 

 ,  , ,  ,  ,  

 
Control scenario 

ParFlow was used to create an idealized, detailed hillslope-scale domain. The model represents 
hillslope domain of x′ = y′ = 3000 and z′ = 30. The domain was wedge-shaped to allow for the 
initialization of the water table at a specified depth. The grid dimensions used were dx′ = dy′ = 50 
and dz′ = 0.2 resulting in nx = ny = 60 and nz = 300, for a total size of 1.08 million compute cells. 
The saturated hydraulic conductivity was populated using Gaussian correlated random fields as 
has been used frequently in past hydrogeological studies (Tompson et al., 1989; Rubin, 2003; 
Rubin & Dagan, 1992), specifically using the Turning Bands Algorithm (Tompson et al., 1989). 
Constant van Genuchten (van Genuchten, 1980) parameters were used to describe the pressure–
saturation relationship used to solve Richards’ equation. Bedslopes were set to Sf,x = –0.005 and Sf,y 
= 0.0 with and a constant non-dimensional Manning’s n′ of 2.32 × 10-6. The specified slopes allow 
for overland flow in the x direction only.  
 Rain was applied over the entire domain for a Δt′ = 1 and a recession period of Δt′ = 1 for all 
cases, with an additional recession period of Δt′ = 5 for baseflow cases. For the overland cases, the 
water table is initialized at the base of the domain to allow for Hortonian runoff flow only. 
 
 

  
Fig. 1 Problem schematic and representation of (a) one heterogeneity realization and (b) resulting 
saturation pattern. Note the log scale in permeability, where black is low permeability and grey is high 
permeability. Also, note the X and Y-axis have an exaggeration of 0.25× and Z axis of 4×. 
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However, for baseflow cases the water table was initialized at the slope base to allow for a mixture 
of Dunne and Hortonian flow. The water table locations are the only initial conditions applied over 
the domain. Boundary conditions in the domain are no flow on all x–y subsurface faces except for 
the land surface, where there is an overland flow boundary condition. Overland flow is allowed to 
leave the domain, while subsurface flow in the Xmax face is considered to be at the channel a point 
of symmetry in our configurations. Figure 1 shows a representation of hillslope permeability (a) 
and subsequent coupled flow simulation, a snapshot in time of the saturation during rainfall (b). 
This figure is also a problem schematic that shows the flow direction and outlet location.  
 
Conditional simulations 

Hydraulic conductivity was directly sampled from the top one metre of soil at regular intervals 
from the control case and these points are used as the basis for a suite of conditional ensembles. 
The same global geostatistics were used in the conditional simulations (i.e. the mean, variance and 
correlations lengths were assumed to be known) as the control scenario but with increasing 
amounts of assimilated data. This resulted in eight cases, unconditional (zero conditioning points), 
75, 150 and 300 conditioning points for the baseflow and overland flow initial conditions. For 
each case, baseflow and overland (unconditional, 75, 150 and 300), 50 equally-likely realizations 
of hydraulic conductivity were simulated and a full transient flow simulation was conducted. 
These equally-likely realizations all contain the same global statistics – mean, variance and 
correlation structure – but have a different spatial arrangement of hydraulic conductivity values 
dependent on a random seed and assimilated data. Simulation results, such as the outflow 
hydrograph, saturation and pressure head, were averaged over all 50 realizations.  
 
 
RESULTS AND DISCUSSION 

Here, we only show the results for the CTRL, unconditional and 300 points cases for brevity. 
Figure 2 shows the hydraulic conductivity fields for the CTRL, unconditional and 300 points cases 
for the land surface. All cases are averaged across all 50 realizations, creating an ensemble average 
saturated hydraulic conductivity for each land surface cell. The unconditional case average shows 
the geometric mean of saturated hydraulic conductivity across the entire land surface. At the 300 
points data level the large-scale features of land surface hydraulic conductivity are more closely 
represented. For the unconditional case the residual errors are large in areas where there are 
 
 

 
Fig. 2 Saturated hydraulic conductivity for the land surface for the CTRL (side image) and averaged for 
ensemble results in column 1 a and b. Column 2 shows the residual between the averaged conditional 
saturated hydraulic conductivity and the CTRL case and column 3 shows the RMSE. Saturated hydraulic 
conductivities are shown in log space. Note the mean squared residuals are plotted on a log scale. 
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variations from the geometric mean of saturated hydraulic conductivity. The 300 conditional cases 
show a reduction in residual errors at the land surface locations of sampling and the surrounding 
areas within the correlation lengths. In each conditional case (Fig. 2(1a,1b) there is distinct 
banding in the land surface saturated hydraulic conductivity. This is a function of the maximum 
search radius in the kriging algorithm. The conditioning scheme that was chosen represents the 
general patterns of the low and high conductivity zones in the 300 points very well but does not 
represent the small-scale heterogeneities; which is a function of averaging over 50 realizations. 
Conditioning saturated hydraulic conductivity allows for the interrogation of runoff, land surface 
saturation and pressure head to determine how reduction in error and uncertainty of hydraulic 
conductivity propagates to these variables. Below, we connect how reducing uncertainty in 
saturated hydraulic conductivity in baseflow and overland cases affects the spatial and temporal 
signals of runoff, land surface pressure and saturation.  
 At every time step we interrogated land surface pressure head and saturation. For each variable 
the residual and root mean squared residual are interpreted to determine how subsurface 
characterization of saturated hydraulic conductivity propagates to these variables. We will focus on 
the ensemble-averaged predictions of land-surface variables. Different spatial structures of error are 
seen at different times and for different cases (baseflow or overland). In baseflow cases, ponding 
happens very quickly and covers a significant portion of the hillslope; Fig. 3 shows the land surface 
pressure head at a t/ta = 1.0 for the baseflow case. Reducing subsurface uncertainty upslope (near the 
hillslope maximum) propagates downslope; which is prevalent in the 300 points case residuals (Fig. 
3). With increasing data assimilation the large scale heterogeneities of pressure head are resolved 
more finely. In the overland cases, the same propagation of error downslope is not seen (Fig. 4). 
Error reduction is seen in areas where the low saturated hydraulic conductivity zones are more 
resolved. Hortonian flow is more likely to occur on low saturated hydraulic conductivity than on 
high-saturated hydraulic conductivity areas. Determining these low conductivity zones is crucial for 
prediction in overland flow cases. In both Fig. 3 and Fig. 4 data assimilation results in a better 
prediction of the large-scale heterogeneities. We also see an under prediction of ponding in the 
maximum ponding areas and an over prediction in small ponding areas.  
 In land surface saturation for baseflow cases, Fig. 5 (t/ta = 4.0), the residual errors have the 
same spatial structure as the saturated hydraulic conductivity, where the water table has not 
interacted with the land surface. In each conditioning case the ensemble average land surface 
saturation dries out quicker than the CTRL case. For overland land surface saturation (t/ta = 2.0, 
 
 

 
Fig. 3 Land surface pressure head for the baseflow conditioning cases at t/ta = 1.0. Plot a for the 
unconditional case, plot b is for 300 conditioning points. Column 1 is the ensemble average land surface 
pressure head, column 2 is the residual between the CTRL case and the ensemble average and column 3 is 
RMSE between the CTRL case and the conditioning case. 
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Fig. 4 Land surface pressure head for the overland flow conditioning cases at t/ta = 1.0. Plot a for the 
unconditional case, plot b is for 300 conditioning points. Column 1 is the ensemble average land surface 
pressure head, column 2 is the residual between the CTRL case and the ensemble average and column 3 is 
the RMSE between the CTRL case and the conditioning case. 

 
 

 
Fig. 5 Land surface saturation for the baseflow conditioning cases at t/ta = 4.0. Plot a for the unconditional 
case, plot b is for 300 conditioning points. 1 is the ensemble average land surface saturation, 2 is the 
residual between the CTRL case and the ensemble average and 3 is the RMSE between the CTRL case and 
the conditioning case. 

 
 
Fig. 6), after the rainstorm, the spatial structure of the difference between the CTRL and 
conditioning case is representative of the hydraulic conductivity (Fig. 2).  
 For each conditional case outflow was recorded and averaged over the ensembles then com-
pared to the CTRL. Figure 7 plots the resulting hydrographs for each of the cases (unconditional and 
300 points) for overland (Fig. 7 Row 1) and baseflow (Fig. 7 Row 2). In the unconditional cases for 
overland flow it can be seen that the variance from the maximum flow to lowest flow realization is 
quite large and that the average of the conditional cases is drastically different from the CTRL case. 
With increasing data assimilation, at 300 points we see the ensemble average outflow more closely 
matches the CTRL case. In this figure we also see that the variance of outflows produced by each 
ensemble encompasses the CTRL much more closely. Variance in outflow for the baseflow case is 
less than the overland case outflow; this is a result of baseflow hydrographs reflecting effective 
behaviour and capturing the outflow for each individual realization (Meyerhoff & Maxwell, 2011). 
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Fig. 6 Land surface saturation for the overland flow conditioning cases at t/ta = 2.0. Plot a for the 
unconditional case, plot b is for 300 conditioning points. Column 1 is the ensemble average land surface 
saturation, Column 2 is the residual between the CTRL case and the ensemble average and Column 3 is the 
RMSE between the CTRL case and the conditioning case. 

 
 

 

 
Fig. 7 Overland flow (Row 1) and Baseflow (Row 2 ) hydrographs for each of the conditionals case 
(unconditional, 75 , 150 and 300 points). Thick black lines represent the CTRL case flow, thick grey is 
the averaged ensemble outflow, and black lines are each individual realization. 

 
 
CONCLUSION 

In this study we used the fully coupled hydrologic model ParFlow to simulate groundwater and 
surface water flow to determine how subsurface characterization of permeability affects runoff 
prediction. Two separate control cases, overland (Hortonian flow) and baseflow (mixture of Dunne 
and Hortonian flow) were simulated. Hydraulic conductivity from the control cases was 
assimilated into an ensemble of realizations with increasing data density (unconditional, 75, 150 
and 300 points). The ensembles of realizations were compared to the CTRL cases to determine 
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how increasing data assimilation affects runoff, saturation and pressure head. The hillslope used 
was idealized, using constant rain and hillslope, however, from this study the following 
conclusions were reached: 
(1) Hydrograph uncertainty was reduced with increasing data assimilation for both overland and 

baseflow cases (Fig. 7), where the averaged ensemble flow more closely resembles the CTRL 
case flow. In overland cases a larger reduction in variance is seen between the realization 
cases.  

(2) Spatial uncertainty in both land surface saturation and pressure show a decrease in difference 
with increasing data assimilation. Large-scale patterns of both pressure head and saturation 
were greater resolved with increasing data assimilation. This shows that reducing subsurface 
saturated hydraulic conductivity uncertainty propagates through a coupled flow system to both 
saturation and pressure head (Figs 3–6). 

(3) We see that conditioning of the land surface shows a propagation of reduced difference and 
error downslope of the conditioning points in baseflow cases (Fig. 3). Pressure head showed 
no spatial structure correlation to the reduction in uncertainty for saturated hydraulic 
conductivity. 

(4) Residual errors in the land surface pressure head and saturation were reduced with increasing 
data assimilation (Figs 3–6). This was seen for both the overland and baseflow cases.  
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