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Abstract MODFLOW has been widely used for many years to investigate groundwater flow systems. In 
most numerical models, including MODFLOW, >80% of memory and execution time is used for the matrix 
solver; thus, improving matrix solver performance is a key to improve simulation performance. A χMD 
solver package was developed for higher robustness, faster execution speed, and better memory efficiency. 
The preconditioning module of χMD consists of level-based incomplete LU (ILU) factorization with a drop 
tolerance scheme that can reduce memory usage and lead to faster execution speed. The acceleration part 
consists of the conjugate gradient method, Bi-CGSTAB and ORTHOMIN. The χMD solver package is 
adapted for MODFLOW-2005 and preliminary results show that level-based ILU factorization with a drop 
tolerance scheme greatly reduce memory usage compared to ILU-only factorization by a factor of two or 
more. In addition, execution times decrease by 40% or more. 
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INTRODUCTION 

MODFLOW (Harbaugh, 2005) has been used for many years to solve groundwater flow problems 
and is a widely accepted standard for groundwater modelling. More than 80% of memory 
requirements and execution time of most numerical simulation programs, including MODFLOW, 
are due to the matrix solver. Hence, improvement of the matrix solver is a key for overall 
improvement of simulation performance. A good matrix solver satisfies three essential conditions: 
(1) robustness – capability to solve non diagonally-dominant “hard-to-solve” matrices, (2) shorter 
execution times, and (3) memory efficiency. 
 Nonstationary iterative methods, i.e. conjugate gradient-type methods, have shown their 
effectiveness compared to direct methods and stationary iterative methods, such as Successive 
Over Relaxation and Gauss-Seidel. In nonstationary iterative methods, a preconditioning 
component is paired with an acceleration component. Even if the acceleration methods guarantee 
that the solution will be obtained within a finite number of iterations, higher quality of 
preconditioning is necessary to reduce the number of iterations and the computational cost. The 
convergence rate of a nonstationary method greatly depends on the spectrum of the coefficient 
matrix. 
 In order to increase its convergence rate, preconditioning of the coefficient matrix, which 
transforms the coefficient matrix to a matrix that has a favourable spectrum, is performed. 
Although this preconditioning process adds an extra cost, high-quality preconditioning can reduce 
the overall execution time, and thus overcome the extra cost caused by preconditioning. Hence, 
“preconditioned” conjugate gradient type methods are widely used and lead to the improvement of 
both preconditioning and iterative (i.e. acceleration) parts and are necessary to achieve the 
conditions for a good matrix solver described above. 
 Most preconditioned conjugate gradient-type methods use incomplete LU factorization, which 
is similar to Gaussian elimination, but decomposition is terminated at a certain level. With a higher 
level of factorization, fewer iterations are required because the quality of preconditioning is 
higher; however, cost-per-iteration increases, as illustrated in Table 1. 
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Table 1 The effects of incomplete LU factorization on the factors which affect overall solver performance. 

Level of fills in preconditioning Lower ⇔  Higher 

Quality of preconditioning Lower ⇔  Higher 

Robustness Lower ⇔  Higher 

Number of iterations in acceleration Higher ⇔  Lower 

Cost/iteration Lower ⇔  Higher 

 
 
 This is because memory costs of higher level factorization are greater than those of lower level 
factorization because a greater number of new fill-in entries appear in the process of decomposition. 
A higher quality of preconditioning (i.e. a higher level of factorization) is advantageous because it 
shows higher robustness but cost-per-iteration is higher, as described above. 
 Therefore, even if a selected ILU factorization level has higher robustness and the number of 
iterations is decreased, the total computational cost, which is the product of the number of 
iterations and cost-per-iteration, is not necessarily reduced. An optimal combination of cost-per-
iteration and number of iterations can be obtained at lower level (Fig. 1). 
 
 

  
Fig. 1 Schematic diagram showing the relationship between level of fill, number of iterations, and cost 
per iteration. 

 
 
 If we can reduce cost per iteration (i.e. decrease the slope angle of the line representing cost-
per-iteration) and obtain a new optimal combination point, as shown in Fig. 1, the total cost can be 
greatly reduced.  
 In order to achieve this goal, a drop tolerance scheme has been developed to obtain a higher 
level factorization (i.e. higher quality of preconditioning and less expensive computational work 
per iteration) was implemented (Munksgaard, 1980; Zlatev, 1982). In this scheme, the small new 
fill-in entries that tend to appear in higher factorization and have little or no effect on the quality of 
preconditioning are discarded. This leads to a decrease in execution time. Because the new optimal 
combination point will be obtained at higher level, the matrix solver can enhance its robustness, 
which is very important when we have to solve non diagonally-dominant “hard-to-solve” matrices. 
 A new χMD solver package (Niswonger et al., 2011) was developed for higher robustness, 
reduced execution times, and better memory efficiency. The preconditioning part of the solver 
includes ILU factorization with a drop tolerance scheme, which can reduce memory usage. The 
acceleration part consists of the conjugate gradient method (Hestenes & Stiefel, 1952) for a 
symmetric matrix, and Bi-CGSTAB (van der Vorst, 1992) or ORTHOMIN (Vinsome, 1976) for a 
non-symmetric matrix. The χMD solver package is adapted for both an Un-Structured Grid 
Version of MODFLOW (Panday et al., 2011) and MODFLOW-2005. Its performance was 
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compared with other matrix solvers in MODFLOW-2005 and examined through a regional 
groundwater flow simulation problem. 
 
Solver performance comparisons 

As the first step, the performance of the newly implemented χMD solver package was compared 
with the GCG (Hestenes & Stiefel, 1952) and GMRES (Saad & Schultz, 1986) matrix solvers 
available for MODFLOW-2005. Two test problems are used for the comparisons (Fig. 2). The  
1-layer and complex test problems constitute 16 046 and 96 800 nodes, respectively. Note that 
GCG failed to converge for the 1-layer problem and GMRES L1 and L2 failed in the 
preconditioning section for the complex problem.  
 It can be seen from Fig. 2 that the χMD solver package shows better performance than the 
other solvers. In the 1-layer test problem, the execution time for the χMD solver package is about a 
factor of four less than the other solvers and by a factor of 14 in the complex test problem. It also 
shows robustness of the χMD solver package relative to other solver packages because other solver 
packages failed in the preconditioning or acceleration parts. 
 
 

  
Fig. 2 Comparisons of execution time among matrix solvers. Note that GCG failed to converge for the 
1-layer problem and GMRES L1 and L2 failed in the preconditioning section for the complex problem. 

 
 
χMD SOLVER PERFORMANCE 

Level-only preconditioning 

In order to evaluate the effects of preconditioning in the χMD solver package, sensitivity analyses 
were performed. The simulation problem for these analyses consists of two layers of geological 
units with an area of 56.3 km2. The domain was discretized with 730 000 model cells and contains 
40 000 wells and 23 000 streams, which are represented as head-dependent boundary cells. 1170 
cells are connected to the streams and evapotranspiration and recharge were simulated. All model 
layers are convertible between confined and unconfined conditions, and all cells remain active 
during wetting and drying of cells. The hydraulic conductivity of porous materials of the model 
domain ranges between 0.003 and 3 m/day. 
 Figure 3 illustrates the effects of the level of ILU on the number of elements in the 
preconditioning matrix (i.e. memory usage) and execution time. It can be seen from the diagram that 
as the level of ILU increases, the quality of preconditioning increases and leads to less iterations in 
the acceleration part, and accordingly, execution time decreases. We can see this trend up to the ILU 
level of four. However, an increase in elements in the preconditioning matrix results in an increase in 
cost-per-iteration. Although the number of iteration decreases as the quality of preconditioning 
matrix increases (i.e. the ILU level increases), the overall execution time does not decrease. 
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Fig. 3 Number of elements in preconditioning matrix (i.e. memory usage) and execution time for level-
only preconditioning. 

 
 

  
Fig. 4 Number of elements in preconditioning matrix (i.e., memory usage) for level only and level with 
drop tolerance preconditionings. 

 
 

  
Fig. 5 Execution time for level only and level with drop tolerance preconditioning. 

 
 
Level with drop tolerance pre-conditioning 

As the level of ILU increases, new small fill-ins appear in the preconditioning matrix. In a drop 
tolerance scheme, small entries that have little or no effect on the quality of the preconditioning 
matrix are discarded to maintain the higher quality of the matrix while decreasing cost-per-
iteration. Figure 4 illustrates the effects of the level of ILU on the number of elements in the 
preconditioning matrix. 
 It can be seen from the diagram that the number of elements in the preconditioning matrix 
increases as the level of ILU increases in a similar way to that observed in level-only 
preconditioning. However, the number of elements becomes constant when the value of the ILU 
level is greater than or equal to six because new small entries are dropped. 
 The effects of the level of ILU on execution time are shown in Fig. 5. The execution time, on 
the other hand, decreases as the level of ILU increases. Although we observed that the execution 
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time increases after the value of level of four in level-only preconditioning, this preconditioning 
shows that the execution time continues to decrease. This is because the quality of preconditioning 
becomes higher, which reduces the number of iterations in the acceleration part, while maintaining 
lower cost per iteration by discarding smaller new entries. 
 It can be seen from Fig. 4 that level-based ILU factorization with a drop tolerance scheme 
greatly reduces memory usage compared to ILU-only factorization by a factor of two or more. 
Furthermore, the execution time decreases by 40% or more (Fig. 5). 
 
Sensitivity analysis of the drop tolerance value 

We demonstrated that level-based ILU factorization with a drop tolerance scheme shows better 
performance compared to level-based ILU-only factorization. In order to examine the effect of 
drop tolerance value, a sensitivity analysis is performed. Figure 6 shows that the effect of the drop 
tolerance value on the number of elements in the preconditioning matrix (i.e. memory usage) and 
execution time. In this analysis, the ILU level is assigned a value of 10. It can be seen from the 
diagram that as the value of drop tolerance increases, the number of elements in the 
preconditioning matrix decrease. Accordingly, the execution time decreases because of a decrease 
in cost-per-iteration in the acceleration part. 
 However, an increase in the execution time is observed when the value of drop tolerance is 
greater than or equal to 4 × 10-4. This increase in the execution time is caused by degradation in the 
quality of the preconditioning matrix. In the case of factorization with a larger drop tolerance value, 
the factorization discards not only smaller inconsequential entries, but also larger entries, which are 
essential to maintain the higher quality of the matrix. A degraded preconditioning matrix results in 
higher numbers of iterations in the acceleration part and increased overall execution time although 
cost-per-iteration is small. This indicates that choosing an appropriate value of tolerance is essential 
for this factorization scheme. Through a series of sensitivity analyses for other simulation cases, we 
found that an appropriate value of tolerance ranges from 1 × 10-4 to 1 × 10-3. 
 
 

  
Fig. 6 Effects of drop tolerance value on memory usage and execution time. 

 
 
CONCLUSIONS 

A χMD solver package was developed for higher robustness, reduced execution times, and better 
memory efficiency. Its performance was compared with other matrix solvers available for 
MODFLOW-2005. In addition, its performance was examined through a series of sensitivity 
analyses. Through performance comparisons, the χMD solver package outperforms the other 
solvers evaluated by a factor of four or more in the execution time. In the sensitivity analyses, it is 
illustrated that a drop tolerance scheme significantly decreases memory usage and execution time. 
It is also shown that the value of drop tolerance and the level of ILU greatly affect overall 
execution time and memory usage. An appropriate choice for those values is essential to maximize 
performance. 
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 A drawback of a drop tolerance scheme is that it is harder to implement in practice. This is 
because the amount of storage needed for the ILU factorization is not easy to predict since entries 
in the coefficient matrix and new fill-in entries appear in the process of decomposition are not 
known a priori. However, this drawback can be overcome by using programming languages which 
can handle dynamic memory allocation, such as C and newer FORTRAN90 programing languages. 
The amount of storage needed in the factorization process involving a drop tolerance scheme is 
efficiently handled in the χMD solver package, which is written in FORTRAN90. 
 Although we showed performance of the χMD solver package which was adapted for 
MODFLOW-2005, the χMD solver package can be adapted for any numerical simulator that 
solves matrices which are assembled through numerical discretization processes. As demonstrated 
in this paper, it has a potential to improve performance of models with respect to execution time, 
robustness, and memory usage. 
 
 
REFERENCES 
Harbaugh, A. W. (2005) MODFLOW-2005, the US Geological Survey modular ground-water model-the Ground-Water Flow 

Process: US Geological Survey Techniques and Methods 6-A16 (variously paginated). 
Hestenes, M. R. & Stiefel, E. (1952) Methods of conjugate gradients for solving linear systems. J. Res. National Bureau of 

Standards 49, 409–436. 
Munksgaard, N. (1980) Solving sparse symmetric sets of linear equations by preconditioned conjugate gradients. ACM Trans 

Mathematical Software 6, 206–219. 
Niswonger, R.G., Panday, S. & Ibaraki, M. (2011) MODFLOW-NWT, A Newton Formulation for MODFLOW-2005. US 

Geological Survey Techniques and Methods 6-A37, 44 p. 
Panday, S., Niswonger, R. G., Langevin, C. D. & Ibaraki M. (2011) An Un-Structured Grid Version of MODFLOW, 

MODFLOW and More 2011. 
Saad, Y. & Schultz, M. H. (1986) GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. 

SIAM J. Sci. Stat. Comput 7(3), 856–869. 
van der Vorst, H. A. (1992) Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric 

linear systems. SIAM Journal on Scientific and Statistical Computing 13(2), 631–644. 
Vinsome, P. K. W. (1976) ORTHOMIN—An iterative method for solving sparse banded set of simultaneous linear equations. 

In: Fourth SPE Symposium on Numerical Simulation of Reservoir Performance (Los Angeles, 19–20 February), 149–159, 
SPE. paper SPE 5729. 

Zlatev, Z. (1982) Use of iterative refinement in the solution of sparse linear systems. SIAM J. Numerical Analysis 19, 381–399. 


	INTRODUCTION
	Solver performance comparisons

	χMD Solver performance
	Level-only preconditioning
	Level with drop tolerance pre-conditioning
	Sensitivity analysis of the drop tolerance value

	conclusions
	References

