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Abstract The role of high and low hydraulic conductivity regions in heterogeneous, stratified flow fields and 
the subsequent effect of rate dependent geochemical reactions are investigated. Human health risk (cancer) is 
used as an endpoint for comparison via a two-stage nested Monte Carlo scheme, explicitly considering joint 
uncertainty and variability. Parameter interplay is investigated using stochastic ensembles. This study identifies 
the effect of geo-hydrologic conditions on solute equilibrium and the effect of preferential flow pathways and 
mixing at the field and local scales for varying degrees of stratification. Results show effective reaction rates of 
kinetic ensembles are dissimilar from equilibrium ensembles with local dispersion, resulting in an additive 
tailing effect of the solute plume, a retarded peak time, and an increased risk. Uncertainty in risk is also 
controlled by these factors. We demonstrate that a higher associated uncertainty of risk in stratified domains is 
linked to higher aquifer connectivity and less macrodispersion. 
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INTRODUCTION 

Contradictory to field and laboratory observations showing non-ideal, or kinetic behaviour of 
reactive solutes (e.g. Pickens et al., 1981; Roberts et al., 1986), contaminant transport studies are 
often modelled using a linear equilibrium assumption (LEA), and may therefore prove problematic 
for accurately quantifying human health risk. Correctly identifying point values of the contaminant 
plume (i.e. at a well) is imperative for accurately calculating human health risk because 
groundwater concentrations are often directly used as exposure values to assess risk. The 
importance of fundamental groundwater flow and transport processes in risk assessment has been 
demonstrated in multiple studies (Andričević et al., 1994, 1996; Maxwell et al., 1999; Smalley et 
al., 2000; Hassan et al., 2001; Benekos et al., 2003, 2007; Tartakovsky, 2007; Bolster & 
Tartakovsky, 2008; de Barros & Rubin, 2008; Maxwell et al., 2008; Bolster et al., 2009; de Barros 
et al., 2009; Siirila et al., 2012). Most recently, the influence of a contaminant’s sorptive capacity 
was found to be a controlling factor in determining if risk exceeded United States Environmental 
Protection Agency (EPA) remediation action levels (RAL) (Siirila et al., 2012). Under an exposure 
duration of 30 years, differing degrees of instantaneous equilibrium sorption (referred to here as 
the local equilibrium assumption, LEA) yielded a nonlinear probability of an individual incurring 
cancer over a lifetime and/or experiencing an adverse health effect, where values of predicted risk 
varied by over an order of magnitude. This finding warrants further analysis of the assumption of 
LEA in risk assessment. 

In the present study, a theoretical case study is used to simulate an example contamination 
scenario (i.e. CO2 leakage in Carbon Capture and Storage, CCS) involving mobilized arsenic. 
Arsenic is a worldwide contaminant of concern in groundwater resources and is furthermore of 
importance due to its high cancer and non-cancer adverse health effects. Both the validity and 
predictability of LEA is investigated by stochastically simulating ensembles of both linear and 
kinetic sorption scenarios that should theoretically retard the solute equally if equilibrium is an 
appropriate assumption. An investigation of potential inter-play (positive or negative feedbacks) 
between multiple hydro-geologic parameters is conducted for both kinetic and LEA ensembles. In 
particular, the effect of preferential flow pathways and solute mixing on the field-scale 
(macrodispersion) and sub-grid (local dispersion) is examined for varying degrees of stratified, 
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heterogeneous flow fields. The stratified aquifer is of interest because inter-connected pathways 
are much more prevalent, where channelling of solutes through areas of higher hydraulic 
conductivity effectively decrease the overall effect of macrodispersion (Siirila et al., 2012). 
Finally, carcinogenic human health risk is used as an endpoint of comparison by utilizing the 
methodology developed by Siirila et al. (2012). Risk is calculated for a population of potentially 
exposed individual using a nested Monte Carlo approach, explicitly considering uncertainty in 
environmental parameters and variability in individual physiological and exposure parameters.   
 
 
METHODOLOGY 

Following the framework of Siirila et al. (2012), far-field groundwater flow and solute transport is 
modelled stochastically to account for uncertainty in groundwater flow paths. A complete set of 
the governing equations for flow, transport, and for human health risk are described in Siirila et al. 
(2012) and are not shown here for brevity. 
 
Hydrologic flow field, heterogeneity, and solute transport  

Uncertainty in hydrologic flow and subsurface properties is accounted for by the use of a 
stochastic Monte Carlo scheme where multiple realizations of equally probable heterogeneous 
subsurface domains are simulated, all honouring the same global statistics. An isotropic 
exponential correlation model is used to define spatial correlation of hydraulic conductivity K 
(m/d) via a separation distance (ξ) (m) and correlation lengths in the horizontal and vertical 
directions (λh, λv, respectively) (m): 

Re
ff(ξ) = σ2exp– ξ/λ  (1) 

 In this study, the magnitude of λh is used to describe the degree of aquifer stratification and is 
a principal parameter investigated in the sensitivity analysis of the case study. The degree of 
stratification is discussed in terms of the anisotropy ratio, ε = λv/ λh (–). Far-field aquifer flow is 
simulated using the parallel, three-dimensional groundwater model ParFlow (Ashby & Falgout, 
1996; Jones & Woodward, 2001; Kollet & Maxwell, 2006) and spatially correlated random fields 
of K are internally generated in ParFlow using the turning bands algorithm (Tompson et al., 1989).  
 Realizations of flow fields are linked to a solute transport model to simulate plume migration 
from a fixed pulse source. Sensitivity to hydraulic properties is explored by generating multiple 
ensembles of varying hydraulic properties and analysing the statistical outcome of an endpoint 
measured in the solute transport model (i.e. concentration at a well). Solute transport is simulated 
using the Lagrangian particle tracking model SLIM-FAST (Maxwell & Kastenberg, 1999; 
Maxwell et al., 2007; Maxwell, 2010). Non-reactive (i.e. tracer), LEA, and first-order kinetic 
particle simulations are conducted. LEA simulations utilize the partition coefficient (KD) (L kg-1), 
defined as the slope of sorption isotherm. Kinetic simulations utilize time dependent forward (kf) 
(L d-1) and reverse (kr) (kg d-1) rates with an equivalent ratio to the partition coefficient KD = kf/kr. 
All sorption parameters (KD, kf, kr) are constant in space and time. Here the retardation (R) (–) of 
the solute is a direct relationship with KD for LEA simulations and the ratio (kf/kr) for kinetic 
simulations, where RLEA = (1 + ρbKD/θ) and Rkin = [1 + (ρbkf/krθ)]. Local, or pore-scale dispersion 
(PSD) has also been linked to sensitivity in higher order moments (i.e. point flux and 
concentration variances) (Dagan & Fiori, 1997; Fiori et al., 2002; Fiorotto & Caroni, 2002; Bellin 
et al., 2004). This increase in dispersion is quantified in terms of displacement by the non-
dimensional Péclet number (Pe) and simplified through the dispersivity relationship (DL = αLvx) as 
Pe = (vxλ/DL) = (λh/αL (–). 
 
Peak concentration distributions, effective retardations, connectivity indicator 

To quantify the effects of each parameter adjusted in the sensitivity analysis (i.e. ε, Pe, sorption 
scenario) the peak time (tpk (d)) and peak concentration normalized with the initial concentration 
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(Cpk/C0 (–)) at which the maximum mass arrives at the well is calculated (for each well, per 
realization). A cumulative distribution function (CDF) where each point represents a well in a 
realization of the ensemble is then compared. For each sorption scenario, effective retardation is 
expressed relative to tpk and Cpk/C0 of the corresponding tracer simulation of that realization:  

,  
  (2) 

 This essentially uses the conservative tracer simulations as a control by holding the 
parameters ε and Pe constant and isolating the effect of the sorption scenario alone. Equation (2) is 
based on the results of the numerical simulations and describes the effective retardation of the 
overall plume. Due to the relationship between the ratio kf/kr and KD (see definition above), if LEA 
is an appropriate assumption, Reff,LEA is equivalent to Reff,kin, regardless of the hydrologic domain or 
the transport parameters.  
 Lastly, the effect of channelling through preferential flow paths is investigated calculating the 
connectivity indicator, CI (–). As described by Knudby & Carrera (2005), the shape of the 
breakthrough curve (higher order moments), can be used to relate the degree of connectivity within 
an aquifer. Here we define CI as the ratio of the time at which 5% of particle mass is present at the 
well (t5) (d), and the time at which 50% of the particle mass is present at the well (t50) (d) via CI = 
t50/t5. A higher CI value signifies a breakthrough curve skewed towards earlier arrival times and 
significant tailing. A higher CI value indicates high channelling when compared to lower CI values 
(Knudby & Carrera, 2005). Parameter inputs are listed in Table 1.  
 
 
Table 1 Flow and transport parameter values. 
Parameter Value Units 
Domain size (x, y, z) ~ (4000 × 1000 × 100) (m) 
Cell discretization (x, y, z) (3.0 × 3.0 × 0.3) (m) 
Number of cells (x, y, z) (1333 × 333 × 333) – 
Location of source (x, y, z) (500.0, 500.0, 30.0), 300 000 particles (m) 
Geometric mean, st. dev. of ln(K) KG,ln(K) = 52, σln(K) = 1.9 (m d-1), (–) 
Porosity θ = 0.33 – 
Well pumping rates Q = 500 (m3 d-1) 
Well locations (4) xw = 3500, zw = 75, (yw = 800, 600, 400 200) (m) 
Anisotropy ratios   
ε = 0.1 (–) λh = 15.0, λv = 1.5 (m) 
ε = 0.006 (–) λh = 250.0, λv = 1.5 (m) 
Sorption scenarios     
LEA, partition coefficient KD = 25 (L kg-1) 
Kin1, forward and reverse rates kf = 2.88, kr = 0.115  (L d-1) 
Local dispersion scenarios     
Pe = ∞ (–) αL = 0.0, αT = 0.0 (m) 
Pe = 1.5 × 104 (–) For λh = 15.0: αL = 0.001, αT = 0.0001 (m) 
Pe = 2.5 × 105 (–) For λh = 250.0: αL = 0.001, αT = 0.0001 (m) 
 
 
RESULTS 

Peak concentration distributions  

For each of the four wells, Cpk/C0 is calculated using elution curves for each. Figure 1 shows the 
inner well (yw = 600 (m), 400 (m)) ensemble CDFs of Cpk/C0 for a continuous source term. Varying 
ε (see key for each sub-plot in Fig. 1), and Pe (Fig. 1 (a) versus (b)) are compared. LEA 
distributions are shown as solid lines whereas Kin1 distributions are shown in dashed lines.  
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 General trends include: (1) an increase in the Cpk/C0 distribution variance with a decrease in ε 
and (2) an increase in the Cpk/C0 distribution variance with an increase in Pe. These results are 
consistent with the findings of Siirila et al. (2012). Changes in macrodispersion can be used to 
explain the greater variance in CDF distribution with lower ε. In the more stratified domain (ε = 
0.006 (–)), the aquifer is subject to lower solute spreading through channelling in interconnected K 
zones. This channelling results in a binary distribution of the solute arriving at the well where 
elution water is either (1) clean, and the connected zone does not follow a pathway connecting 
from the source to the well or (2) highly concentrated, and a connected zone between the source to 
the well exists. This behaviour can be thought of as a “hit or miss” probability. A quantitative 
discussion of results regarding channelling is presented below. Lastly, the increase in distribution 
variance attributed to finite Pe is related to the imposed cell-based dispersion or mixing within the 
model. While it is expected that the inclusion of local dispersion will increase distribution 
variance, it should be noted that the cell-based mixing imposed for each cell is minute, equal to 1.0 
(mm) in the longitudinal direction and 0.1 (mm) in the transverse direction (see Table 1). The 
increase in Cpk/C0 distribution variance (imposed by an increase in Pe and a decrease in ε) is 
physically relatable to the probability of pumping non-contaminated water from the well. For 
example, the percentage of clean groundwater withdrawal from a stratified aquifer varies between 
approximately 20 and 90% whereas the less stratified aquifers are always pumping contaminated 
water. 
 The left panel of Fig. 2 shows ensemble CDFs of infinite Pe whereas the right panel of Fig. 1 
shows ensemble CDFs of finite Pe (i.e. Pe = 1.5 × 104 for ε = 0.1 and Pe = 2.5 × 105 for ε = 0.006). 
The magnitude of Cpk/C0 values are also approximately two orders of magnitude less for ensemble 
CDFs of the pulse source term in comparison to the continuous source term. Kin1 ensembles (dashed 
lines) are clearly distinguishable from LEA ensembles (solid lines), suggesting LEA is not an 
appropriate assumption given these hydrologic conditions, where for all scenarios (Fig. 1(a)–(f)) 
LEA ensembles over-estimate the magnitude of Cpk/C0 values and do not dramatically affect the 
variance of the distribution. The lesser kinetic Cpk/C0 values are attributed to delayed mass 
breakthrough at the well (i.e. a longer tailing effect). A disparity between finite Pe (Fig. 1(b)) and for 
infinite Pe (Fig. 1(a)) is also apparent, especially for Kin1 ensembles. This is attributed to an additive 
effect between the time dependence in kinetic sorption and local dispersion, also observed in 
ensembles utilizing the continuous source term. These results show interdependence between kinetic 
sorption and local dispersion not previously documented. Here the induced cell-based mixing creates 
particle jumps from interconnected high K regions into regions of low K and vice versa.   
 We speculate that the effect of the time dependence associated with kinetic sorption into and 
out of solution is magnified, yielding solute behaviour unlike that of equilibrium simulations. Key 
findings in the additive process involving kinetic sorption and PSD include: (1) particle retardation 
similar to LEA in low K zones where low v regimes are conducive to equilibrium conditions,  
(2) lower particle retardation in high K zones via less reaction time in high v regimes, (3) shorter 
particle displacement in low K zones and longer particle displacements in high K zones, and (4) a 
higher frequency of tDisp in LEA scenarios compared to kinetic scenarios.  
 
 

 
Fig. 1 CDFs of inner well normalized peak concentrations for infinite Pe (a) and finite Pe (b).  

(a) (b) 
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Effective retardation factor 

In addition to comparing normalized peak concentrations, corresponding peak times (tpk) are also 
analysed. tpk for each sorption scenario (tpk,LEA and tpk,Kin1) are normalized by tpk time of the tracer 
(tpk,tracer, equation (2)), effectively factoring out the effects of heterogeneity to analyse the sole 
effect of differences in Kin1 and LEA ensembles. Figure 2 shows a scatter plot (12 ensembles, 200 
realizations each) of effective kinetic retardations (Reff,Kin1) versus normalized peak tracer 
concentrations (Cpk/Cpk,tracer) with infinite Pe (a) and finite Pe (b). To demonstrate the behaviour of 
the majority of particles, values corresponding to breakthrough mass greater than or equal to 5% of 
the source mass are shown. The vertical bar at Reff = 26 (–) corresponds to the expected solute 
retardation if equilibrium is an appropriate assumption.  
 
 

 
Fig. 2 Kin1 effective retardation ratios versus normalized peak concentrations for each realization for 
infinite Pe (a) and finite Pe (b).  ε are denoted by symbol (see key).  

 
 
 LEA ensembles (scatter plots not shown here) are centred at Reff = 26 (–), showing good 
agreement with the expected retardation for LEA simulations. Any scatter associated with Reff,LEA 
values is associated with numerical dispersion and the time-step at which concentration is tracked 
as a function of time (i.e. the actual peak time may occur between measured time steps and this 
error, when normalized by a similar error for the tracer, gives rise to what we are referring to here 
as numerical scatter). The scatter associated with finite Pe, (right panel of Fig. 2) displays an 
additive effect of this numerical scatter and the increase in local dispersion. Kin1 ensembles 
(Fig. 2(a)) are not centred at Reff = 26 (–), where the centred values range between Reff = 40 – 70  
(–). The result from infinite Pe (Fig. 2(a)) demonstrates the later arrival time, or added tailing 
effect, imposed from kinetic sorption. The result from finite Pe (Fig. 2(b)) demonstrates the same 
phenomena, intensified by the effect of local dispersion. This result with respect to time is 
consistent with the results with respect to concentration as discussed above, the centred value of 
Reff for finite Pe, Kin1 ensembles is nearly double that of LEA ensembles. Differences in 
stratification are also apparent in Fig. 2, where smaller ε demonstrates less variance in Reff and 
greater ε demonstrate more variance in Reff. In other words, the normalized arrival times for more 
stratified domains are consistent in contrast to the less consistent arrival times with the less 
stratified domain. This result can also be attributed to channelling and preferential flow pathways 
in the stratified domain. 
 
Measure of aquifer channelling 

To investigate aquifer connectivity (often referred to as channelling or fingering), the connectivity 
indicator (CI) metric is utilized in conjunction with breakthrough times corresponding to when 
50% and 5% of the mass arrives at the well. Table 2 shows statistics corresponding to the average 
connectivity indicator (<CI> (–)) and standard deviation of the connectivity indicator (σCI (–)) for 
varying Pe, and sorption scenarios. 
 General trends in <CI> include: (1) greater <CI> for kinetic sorption ensembles and lesser 
<CI> for LEA ensembles, (2) greater than or equal <CI> in ensembles including PSD and lesser or 
equal <CI> ensembles excluding PSD. This analysis also indicates <CI> is invariant to differences 

(a) (b) 
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in ε. The higher CI values within Table 2 signify a breakthrough curve skewed towards earlier 
arrival times and significant tailing. These results are consistent with the analysis presented above, 
where it was shown that the resulting solute peak concentration from kinetic sorption and/or PSD 
is retarded in time. General trends in σCI provide for greater discussion, and include: (1) greater σCI 
for kinetic sorption ensembles and lesser σCI for LEA ensembles, (2) much greater σCI in stratified 
domains (ε = 0.006) in comparison to smaller σCI in less stratified domains (ε = 0.1). σCI is 
invariant to differences in PSD. The most apparent of these trends is the difference in σCI with 
stratification (trend 2). While the mean magnitude of connectivity does not differ drastically given 
differences in stratification, connectivity is highly variable within the ε = 0.006 ensembles and not 
within the ε = 0.1 ensembles. CI values within stratified aquifers are as high as 3.9 (–), and as low 
as 1.0 (–). In the case of highly anisotropic media, multiple realizations of the ensemble are 
dominated by either very fast or slow flow paths, signifying σCI is a better metric for connectivity 
in comparison to <CI>. Ensembles with the greatest σCI are the Kin1 ε = 0.006 ensembles, 
indicating kinetic sorption is controlling in the shape of the breakthrough curve. Finite Pe of these 
ensembles (ε = 0.006, Kin1) compared to infinite Pe also contributes to greater σCI, promoting the 
aforementioned finding concerning a positive feedback between kinetic sorption and PSD. A 
greater σCI in kinetically driven, stratified domains is physically explainable when PSD may induce 
movement of particles originally located in low K zones into high K channels and yield a lower 
effective retardation of the particle.  
 
 
Table 2 CI statistics for each ensemble. 
ε = 0.1  <CI> σCI

  ε = 0.006 <CI> σCI
 

LEA Pe = ∞ 1.31 0.03 LEA Pe = ∞ 1.33 0.25 
 Pe = 1.5 × 104 1.31 0.03  Pe = 2.5 × 105 1.50 0.25 
Kin1 Pe = ∞ 1.53 0.05 Kin1 Pe = ∞ 1.48 0.32 
 Pe = 1.5 × 104 1.64 0.06  Pe = 2.5 × 105 1.65 0.34 
 
 
 The probability of an individual incurring carcinogenic cancer risk was calculated (Siirila et 
al., 2012). Figure 3 shows cancer risk given a pulse source for (a) infinite Pe and (b) finite Pe to 
the maximally exposed individual (99th fractile of variability) at the 5th, 50th and 95th percentile 
of uncertainty (shown here as upper and lower bound around the 50th percentile of uncertainty). 
Varying v (x-axis) is presented for differences in ε for the two flow field ensembles. LEA 
distributions are shown in solid lines whereas Kin1 distributions are shown in dashed lines. 
Remediation action levels are also plotted as horizontal lines at 10-6 (–).  
 Figure 3(a) shows the probability of risk given a pulse source and infinite Pe whereas 
Fig. 3(b) shows the probability of risk given a pulse source and finite Pe. For each Pe scenario, all 
ensembles are dissimilar, and dis-equilibrium conditions exist. Changes in each variable (i.e. ε, Pe, 
and sorption scenario) show sensitivity to risk. In general, upper bounds of risk increase with (1) a 
decrease in ε, and (2) LEA ensembles in comparison to Kin1 ensembles. The time dependence 
associated with sorption kinetics diminishes the overall effect of the peak concentration (see 
Fig. 1), resulting in lower probabilities of cancer risk in comparison to LEA ensembles. Because 
mass is conserved in the simulation, the decreased peak concentration results in a smearing of the 
breakthrough curve tail. We previously noted the effect of kinetic sorption with Reff,Kin1 variances is 
greater than the variances of Cpk,Kin/Cpk,tracer and that the additive effect of PSD-kinetic sorption 
yield the highest change in effective retardations (Fig. 2). It is important to distinguish here that 
the risk simulations are directly dependent on the value of maximum concentration in the well, and 
do not reflect the variance in effective retardations directly.  
 The effect of PSD decreases both LEA and Kin1 risk upper bound values. Differences in ε are 
present for finite and infinite Pe, consistent with the results from the Reff,Disp metric (Fig. 2). Here, 
the demonstrated parametric sensitivity is substantial, suggesting the feedbacks between processes 
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such as PSD and kinetic sorption are significant and should not be dismissed in risk analysis 
modelling or in groundwater solute transport problems.  
 
 

   
Fig. 3 Increased cancer risk for the maximally exposed individual (99th fractile of variability) for a 
pulse source term is shown for (a) infinite Pe and (b) finite Pe. The 99th and 5th percentiles of 
uncertainty are plotted as upper and lower bounds around the mean (50th percentile) for each ensemble. 
Varying v is also shown (x-axis) for differences in ε (see key shown in Figs 2 and 3). LEA distributions 
are shown in solid lines whereas Kin1 distributions are shown in dashed lines. 

 
 
CONCLUSIONS 

An investigation was conducted to analyse the effect of kinetically sorbing solutes in stratified 
aquifers to assess realistic far-field groundwater contamination scenarios where variations in 
sedimentology and stratigraphy are dominant factors in determining contaminant flow and transport. 
An investigation of potential inter-play (positive or negative feedbacks) between multiple hydro-
geologic parameters was conducted for both kinetic and LEA ensembles to assess the validity and 
predictability of LEA through comparisons of stochastic ensembles. Principal findings include: 
 

(1) Parametric sensitivity to aquifer channelling is sensitive to the degree of aquifer stratification. 
While the mean connectivity is independent of ε, the variance in connectivity is highly 
dependent on ε where connectivity is highly variable stratified ensembles and not within less 
stratified ensembles. Either very fast (inter-connected high K zones) or slow flow (inter-
connected low K zones) paths dominate realizations of highly anisotropic media. Connectivity 
variance is the greatest for ensembles including PSD and kinetic ensembles, further promoting 
the results discussed in principal finding 2.  

(2) An additive, or positive feedback, between PSD and kinetic sorption was found to be a 
controlling process in accurately simulating solute behaviour by adding an effective tailing 
behaviour as high as approximately 30 times that of a LEA solute without PSD. We speculate 
that the effect is controlled at the high-low K interface, where the induced cell-based mixing 
creates particle jumps from interconnected high K regions into regions of low K and vice 
versa. The time dependence associated with kinetic sorption into and out of solution is 
magnified with PSD, yielding solute behaviour unlike that of equilibrium simulations when 
the effective retardation of kinetics is much less than R. Here we show the PSD-kinetic 
sorption effect retards the first moment of the plume, a second interdependence phenomenon 
not previously documented.  

(a) 

(b) 
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(3) In general, upper bounds of carcinogenic risk increase with a decrease in aquifer stratification. 
The additive PSD-kinetic sorption effect relates to a higher upper bound of risk for the 
continuous source and a lower upper bound of risk for the pulse source.  

 

 These results suggest small-scale mechanisms such as local dispersion and kinetic sorption are 
controlling of not only solute transport processes but also human health risk assessment. 
Implications of this study are relevant in upcoming technological challenges in contaminant 
transport such as CCS and other relevant human health risk assessments.  
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