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Abstract In this work, we compare four equations of state for carbon dioxide with a large number of 
measurement data taken from literature. This comparison showed that complex equations of state are more 
accurate than simple ones. To see if the differences in accuracy have an influence on numerical simulations, 
we implemented the equations in the scientific software OpenGeoSys and performed comparative 
simulations of a compressible gas flow scenario. We found out that the difference between ideal gas and real 
gas behaviour is quite large, but the differences among the real gas equations have no significant influence 
on the simulation results.  
Key words  equation of state; compressible fluid flow; carbon dioxide; numerical simulation; gas storage;  
supercritical fluid 
 
 
INTRODUCTION 

Equations of state (EOS) are of major importance for the determination of fluid properties. 
Numerical simulations of gas-related applications such as carbon dioxide capture and storage 
(CCS) or natural gas storage (NGS) require the consideration of variable fluid properties. The 
volume of gases strongly depends on the system pressure and temperature conditions.  
 In fluid transport property correlations, i.e. viscosity or thermal conductivity, density has been 
chosen by many authors to be the significant argument (Stephan et al., 1987; Younglove & Ely, 
1987; Vesovic et al. 1990; Fenghour et al., 1998). Furthermore, the density of a fluid is necessary 
to determine quantities such as compressibility, hydraulic conductivity, thermal diffusivity, or 
fugacity. Several EOS have been presented since van der Waals introduced the first equation to 
determine real-gas behaviour in 1873. In this article we compare four equations of state with a 
large number of measurement data. We selected popular formulations as examples for the common 
types of EOS (cubic, virial, and fundamental equations). In addition to the ideal gas law, i.e. the 
thermal equation of state for the hypothetical ideal gas, we chose the formulations of Peng & 
Robinson (1976), Duan et al. (1992), and Span & Wagner (1996) for comparison. While the first 
equation is suitable for most single-component systems, the latter two formulations had to be 
tuned to individual substances by a large number of fitting parameters. In our work, we use carbon 
dioxide as an example fluid.  
 In the first part of this paper, we use the datasets of density measurements performed by 14 
different authors and compare them to the output of the selected EOS (see Table 1). This 
comparison indicates the accuracies of the different formulations at each state of aggregation. 
 The second part of the paper provides numerical comparative example simulations using all 
four EOS. Therefore, we implemented the equations of state and a PDE for compressible fluid 
flow in porous media into the open-source scientific software OpenGeoSys OGS (Böttcher et al., 
2011; Park et al., 2011; Wang et al., 2009). The one-dimensional numerical example simulates a 
gas flow process, where turbulences or non-isothermal effects due to gas expansion are neglected. 
The example investigates the sensitivity of the model to the density function and shows the 
importance of the accuracy of the chosen EOS. In this analysis, we constrain our investigation on 
the influence of density and compressibility accuracy. 
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EQUATIONS AND COMPARISON 

The most classic EOS is the equation of state for ideal gases. At standard pressure and temperature 
conditions, some fluids, e. g. CO2, behave according to this formulation. In general, the higher the 
temperature and the lower the pressure, a fluid approaches to ideal behaviour (compare Fig. 1). 
The EOS for ideal gases can be written as: 

RTpvm =   (1) 
where p is pressure, vm is molar volume, R is the universal gas constant with R = 8.31451 J mol-1 

K-1 (Cohen & Taylor, 1986), and T is temperature. For larger pressures (or lower temperatures), 
the gas behaviour according to system conditions may deviate from ideal behaviour. This 
deviation can be determined by using an EOS for real gases. The Peng & Robinson EOS (PR-
EOS) is a van der Waals-type EOS since it uses the same approach to describe real gas behaviour. 
It uses two parameters a and b to describe attractive and repulsive forces between the gas 
molecules and is defined as: 
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 In equation (3), κ is an empirical parameter given by κ = 0.37464 + 1.54226ω –0.26992ω2; ω 
is the acentric factor presented by Pitzer (1939) and indicates the deviation of the molecule shape 
from an ideal sphere. For CO2, it can be determined to ω = 0.2249. Tc and Tr are critical and 
reduced temperature, where Tr = Tc/T. PR-EOS can be rewritten into a third-degree polynomial, 
thus it belongs to the group of cubic EOS and therefore can be solved directly (e.g. using 
Cardano’s method) so it is very fast to solve. A more complex EOS has been presented by Duan et 
al. (1992) which use 15 parameters to fit the equations outcome to real gas behaviour. The 
equation is known as Duan-Møller-Weare (DMW-EOS) and reads: 
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 The parameters B to F in (4) are called virial coefficients and are defined in Duan et al. 
(1992). Unlike PR-EOS, these parameters have no physical meaning. They have to be tuned using 
measurement data. The equation of state presented by Span & Wagner (1996) is based on the 
fundamental equation of thermodynamics. It is a semi-analytical approach and has been fitted to 
real CO2-behaviour by employing a large number of fitting parameters. The formulation uses a 
derivation of the Helmholtz energy equation to predict the density of the fluid according to system 
conditions. The key-equation for the Span & Wagner EOS (SW-EOS) is given by: 
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where ρ is density, δ = ρ/ρc, τ = Tc/T and [ ]τδ δφφ ∂∂=r

 is the derivative of the dimensionless 
Helmholtz free energy with respect to reduced density δ and is defined in Span & Wagner (1996). 
Both, DMW-EOS and SW-EOS, have to be solved iteratively. A method known as the van 
Wijngaarden-Dekker-Brent method (Brent, 1971) turned out to be the most applicable approach to 
find the desired roots of (4) and (6), since it guarantees convergence as long as the result lies 
within a defined interval. Due to iteration loops, the computational costs for solving DMW-EOS 
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and SW-EOS are much higher than for PR-EOS. Depending on the pT-region of the phase 
diagram, the computing time for the latter two equations may be ten to twenty times higher then 
for the first one (at “ideal” gas state, convergence can be reached much faster than in the vicinity 
of the critical point or at the line of vaporization). 
 To show the accuracies of all four EOSs, we compare their outcome with a total of 1465 
density measurement datasets of CO2 from various authors, see Table 1. Some of these datasets 
have also been used from the developers of DMW-EOS and SW-EOS to fit their correlations or to 
check their results. For better comparability, we classified the datasets into four regions defined 
by: T < Tc and p < pvap(T) for the vapour region, T < Tc and p > pvap(T) for the liquid region, T > Tc 
and p < pc for gas as well as T > Tc and p > pc for supercritical region. pvap(T) is the vapour 
pressure, a function of T, representing the boundary between vapour and liquid region (Fig. 1). For 
the gas and supercritical regions, the scatter plots are shown in Figs 2 and 3. From Fig. 2 it can be 
seen, that for densities ρ < 50 kg/m3 the ideal gas law gives satisfactory results compared to the 
measurements.  
 At standard temperature (Tn = 273.15 K), this value corresponds to a pressure up to p ≈ 
2.0 MPa. For higher densities, the ideal gas law predicted results show growing deviations. 
Surprisingly, the results of the general PR-EOS show better results than the parameter-fitted 
DMW-EOS in these both regions. In Table 2, the averaged absolute deviation AAD, and the root  
 
 

  
Fig. 1 Phase diagram  of carbon dioxide. 

 
 
Table 1 Sources, number as well as temperature and pressure intervals of the used pTρ datasets. 
Source n ΔT Δp Source n ΔT Δp 
  [K] [MPa]   [K] [MPa] 
Ely et al. (1989) 61 250–330 2.2–35.5 Millat et al. (1987) 113 305–426 0.43–6.66 
Gilgen et al. (1992)  69 280–310 1.0–13.5 Clifford et al. 

(1979) 
22 301–303 0.6–5.9 

Michels et al. (1957) 261 273–348 0.9–208.8 Fenghour et al. 
(1995) 

120 330–698 3.0–34 

Michels et al. (1962) 195 298–348 0.1–209.8 Guildner (1958) 22 304–348 0.22–30.4 
Padua et al. (1994) 65 260–300 5.9–100 Kestin et al. (1980) 49 304 0.21–7.3 
van der Gulik (1997) 158 220–308 0.5–100.5 Weber (1992) 12 320 0.14–6.0 
Scott et al. (1983) 92 301–348 0.3–24.6 Duschek et al. 

(1990a,b) 
226 280–320 0.5–9.0 

n – number of datasets, ΔT – temperature range, Δp – pressure range  
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Fig. 2 Scatter-plot of measured and calculated density of CO2 in the gas region (T > Tc, p < pc). 

 
 

  
Fig. 3 Scatter-plot of measured and calculated density of CO2 in the supercritical region (T > Tc, p > pc). 

 
 
Table 2 Averaged absolute deviation (AAD) and root of mean squared error (RMSE) of EOS-predicted 
densities from measurement data. 
state averaged absolute deviation (AAD) [%] 

 
Ideal PR DMW SW 

SC  55.39 6.27 8.42 1.79 
Gas 20.16 1.93 1.59 0.65 
Liquid 63.79 10.31 1.19 0.06 
Vapour 33.45 1.43 3.72 0.23 
 Root of mean squared error (RMSE) [kg/m3] 
 Ideal PR DMW SW 
SC 395.06 48.48 77.79 24.00 
Gas 58.47 3.13 8.35 1.65 
Liquid 612.51 189.5 62.78 1.29 
Vapour 95.54 2.86 19.6 1.19 
 
 
of the mean squared deviation RMSD is shown also for the liquid and the vapour region. From the 
data in this table we can see, that the DMW-EOS therefore gives much better results in the liquid 
region of the CO2 phase diagram, where the cubic EOS gives no satisfactory results. The best 
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match to measured densities provides the fundamental SW-EOS. This result is no surprise, since 
SW-EOS uses the largest number of fitting parameters, and many of the datasets employed for this 
comparison has been used to tune the correlation to real-CO2 behaviour. However, SW-EOS is the 
most precise equation of state for pure carbon dioxide available at this time. 
 
 
NUMERICAL EXAMPLE 

The hereafter presented example simulations consider a closed porous volume containing carbon 
dioxide at high pressure. At simulation start, the volume starts to be evacuated. According to the 
used EOS, the fluid pressure will drop while the gas expands. The observed pressure development 
in the volume is plotted for every simulation and can be compared. 
 
Governing equation 

The formulation for single-phase, compressible fluid flow in porous media derived by the 
continuity equation, has been implemented in OGS and reads: 
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with porosity n, time t, permeability k, viscosity μ, fluid density ρ, and a volumetric source or sink 
term q. Density is solved for pressure and temperature conditions according to the equations of 
state described in the last section. For the fluid compressibility we utilize the formulation: 
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Benchmark test 

We consider a one dimensional model domain of the porous volume, so gas flow occurs only in x-
direction. A schematic of the domain is shown in Fig. 4. At the left boundary, a constant outlet 
pressure p1 is applied, while flow through the right boundary is prohibited. An incompressible 
fluid would lead to an instantaneous dissipation of pressure, so the comparison to an exact solution 
proves the accuracy of the storage formulation. This test example simulates the evacuation of the 
volume assuming simplified conditions. To obtain an analytical solution for this problem, we 
consider a constant molar volume of the gas and compressibility according to ideal gas law. When 
density is not changing with pressure, the fluid compressibility χ becomes constant according to:  

RT
M

ρ
χ 1

ideal =
` 

(9) 

 Physically, this model setup is incorrect, since molar volume is not changing with decreasing 
pressure. But, this simplification is necessary to use equation (10) for benchmark purposes. This 
equation is an analytical solution for this problem, based on the solution for linear heat dissipation 
in a slab presented by Carslaw & Jaeger (1959): 
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where p0 is initial pressure, L is length of the domain and c is 1D-diffusivity defined by: 

idealµφχ
kc =

 
(11) 

 Figure 5 shows a comparison of analytical and numerical simulation. We see practically 
identical results for both solutions. This proves that the storage term for fluid compressibility 
implemented in equation (7) is correct. 
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Fig. 4 Schematics of model domain and FE-mesh of benchmark test and comparative simulations. 

 
 

  
Fig. 5 Dimensionless comparison of analytical and numerical solutions of the benchmark test example. 

 
 

Comparative simulations 

Using the same model geometry as in the benchmark test (Fig. 4), we consider a medium with a 
porosity of n = 0.05 and a permeability of k = 1 × 10-14 m2. The simplification made in the last 
section (keeping density constant), will be avoided for the following comparative simulations.  
 Physically, gas expands at the cost of thermal energy, so the temperature of a system would 
reduce when pressure is decreasing (Singh et al., 2011). To constrain our comparison to density 
and compressibility, we consider isothermal conditions and keep the CO2 temperature at constant 
305 K, which is slightly above critical temperature. Furthermore, viscosity has been considered to 
be constant with μ = 1 × 10-5 Pa s. Unlike from liquid to vapour, the passage from supercritical to 
gaseous state occurs without discontinuities in the EOS, i.e. there is no phase change. 
 The initial pressure in the domain is p0 = 10 MPa, at simulation begin, a standard pressure (p1 
= 0.1 MPa) boundary condition is applied at the left boundary. To investigate the effects of real 
gas behaviour, we designed the model conditions in a way that the working fluid would change its 
state from supercritical to gas. Since the pressure gradient dp/dt drops very fast during a 
simulation, the time step size was chosen to increase, starting from dt = 1 × 10-3 s in the beginning 
to dt = 1·× 102 s at the end of the simulation. 
 Using different EOS, an initial pressure of p0 = 10 MPa corresponds to different initial masses 
of CO2 within the volume. At this pressure, the ideal gas law predicts an initial mass of m0 = 173 
kg/m3, while the real gas EOS provide values between m0 = 697 kg/m3 and m0=750 kg/m3 (see 
Fig. 9). In Fig. 6, the observed pressure at the point x = 0.2 m is plotted for all considered EOS. 
The differences between ideal and real gas behaviour are significant. The pressure curve produced 
by the ideal gas law drops faster than the remaining curves at the beginning of the simulation, 
although the absolute velocity is lower. The reason for this effect is that (a) the total amount of 
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“ideal” CO2 mass is lower than in the real gas simulations (so less CO2 had to flow out) and (b) the 
compressibility (compare Fig. 8) according to ideal gas law is higher than according to PR-EOS, 
DMW-EOS or SW-EOS (so a change of pressure results in a larger change of density). 
 
 

  
Fig. 6 Pressure decrease over time at observation point x = 0.2 m. 

 
 

  
Fig. 7 Velocity development at x = 0.2 m. 

 
 

  
Fig. 8 Compressibility χ of CO2 at x = 0.2 m vs time. 
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Fig. 9 Density of CO2, derived by different EOS, at isothermal temperature t = 305 K. 

 
 
 The differences among the real gas EOS are less considerable. All three curves respond to the 
steep slope at p ≈ 7.5 MPa of the density function, where the smooth passage from supercritical to 
gaseous state occurs. At this point (pseudocritical point), the compressibility rises significantly, 
which results in a faster pressure decrease. After t = 0.23 s, the pressure of the ideal gas drops to 
subcritical conditions. The real gas EOS reaches this point approximately at the same time  
(PR-EOS t = 1.21 s, DMW–EOS t = 1.37 s, SW–EOS t = 1.47 s). 
 
 
SUMMARY AND CONCLUSION 

We showed that, compared to measurement data, the EOS presented by Span & Wagner shows 
very accurate results. The virial Duan-Møller-Weare EOS produces acceptable densities of liquid 
CO2, but shows larger deviations in the gas and vapour region than expected. Except for the liquid 
region, the two-parameter cubic EOS presented by Peng & Robinson provides admissible densities 
for all fluid phases of CO2.  
 Since there are differences in density outcome, we performed numerical example simulations 
constrained to gas compressibility to see whether these differences are important or not. 
Regardless of its simplicity, the ideal gas law is a suitable EOS for CO2 at low pressures. At the 
chosen temperature (T= 305 K) and above, CO2 shows quasi-ideal behaviour up to pressures of p≈ 
2 MPa. For higher pressures, a real gas equation of state has to be used. Considering the constraint 
of compressibility, we can say that the advantage of performance when using a directly solvable 
cubic EOS justifies the slight differences in the simulation output. So, for the shown isothermal 
problem we designate the PR-EOS to be the most suitable equation of state.  
 For more complex problems, e.g. when non-isothermal effects, variable fluid properties or gas 
mixtures are considered, accuracy may play a more important role on the simulation results. 
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