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Abstract The effect of regular orthogonal fracture networks on density dependent free convection is 
investigated by numerical simulations. Discrete orthogonal fracture networks of different fracture spacing 
are systematically added to the Horton-Rogers-Lapwood (HRL) problem for free-convective flow in 
unfractured homogeneous porous rock. The equivalent hydraulic conductivity was preserved when fractures 
were added. Simulation results suggest that fractures affect free-convective flow if: (i) fracture permeability 
is more than five orders of magnitude larger than matrix permeability, and if (ii) fracture spacing is large. 
With decreasing fracture spacing, flow patterns approximate those of the corresponding unfractured HRL 
problem. Furthermore, a diffusion-only case at low Rayleigh number in homogeneous unfractured rock is 
regarded. It is shown that adding few fractures with large fracture spacing promotes free convective flow 
compared to the unfractured case of the same equivalent permeability. 
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MOTIVATION  

In homogeneous aquifers with unstable groundwater density layering, cells of free convective flow 
may form whose number and shape depends, amongst other parameters, on the rock permeability 
and on the prevailing density gradient. The presence of open fractures may complicate the free 
convective flow mode as fractures represent preferential pathways where water flow velocities can 
be significantly larger than in the rock matrix itself. The aim of this study is therefore to determine 
the conditions under which fractures considerably influence free-convective flow. This is 
particularly important for questions concerning salt water intrusion into groundwater bodies near 
coasts or salt lakes, contaminant spreading near waste disposals or geothermal exploitation areas. 
 
 
NUMERICAL MODELLING 

Unfractured homogeneous HRL problem  

The Horton-Rogers-Lapwood (HRL) problem is a well defined test scenario of free convective 
flow in unfractured homogeneous media illustrated in Fig. 1 (Horton & Rogers, 1945; Lapwood, 
1948). The dimensionless Rayleigh number (Ra) can be used to determine the onset of convection. 
The Rayleigh number compares buoyancy that promotes free convection with diffusivity that 
dissipates free convection. If the density gradient is only due to salinity differences and if 
hydrodynamic dispersion is not considered, the Rayleigh number reads: 
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where β is the solute expansion coefficient, ωmax/min is the maximum/minimum salt mass fraction 
(kg kg-1), H is the height of the domain (m), k is the permeability of the porous medium (m2), g is 
the gravitational acceleration (m s-2), ρ0 is the reference fluid density (kg m-3) and µ0 is the 
reference fluid viscosity (kg m-1 s-1). Diffusivity is composed of the free-solution diffusion 
coefficient D0 (m2 s-1), the tortuosity τ (-), and the porosity θ (-). 
 The critical Rayleigh number Rac for the HRL problem is 4π2. This is to say, for Ra < 4π2, the 
system is purely diffusive and is called stable, whereas for Ra > 4π2, the system is dominated by 
buoyancy induced free convection and is called unstable. For high Rayleigh numbers the flow 
pattern of the HRL problem becomes increasingly sensitive to initial conditions and initial 
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perturbations. The present study is therefore limited to low Rayleigh numbers (60 and below). 
That restriction is in excellent agreement with studies on the Elder problem by van Reeuwijk et al. 
(2009). They found that “for Ra < 76, the Elder problem has a single steady state solution”, and 
they therefore limited their studies to the Rayleigh number of 60.  
 Simulations are performed by using the numerical variable-density groundwater flow and 
transport model HydroGeoSphere (Therrien et al., 2010). The control volume finite element method 
is applied to the flow equation and a Galerkin finite element method is applied to the transport 
equation. Flow and transport are coupled because density variations cause nonlinearities in the flow 
equation. The coupled system of equations is linearized by a Picard scheme. Fractures are 
represented as discrete fractures that share common nodes with the adjacent matrix. Thus, for each 
node there is only one unknown for pressure (p) and salt mass fraction (ω), respectively. Fluid 
density is assumed to be a linear function of salinity. For further details on the HydroGeoSphere 
model, the reader is referred to Graf & Therrien (2007), and Therrien et al. (2010). 
 The conceptual model is shown in Fig. 1. Simulations are performed for a rectangular box 
with a height of 10 m, an aspect ratio (width to height) of 2, a thickness of one element and about 
8000 elements in total. A grid refinement study was performed to ensure that this special 
discretization is adequate. The domain boundaries are impermeable, except two Dirichlet nodes at 
the upper left corner of the domain (front and back), where fluid pressure is zero. Lateral 
boundaries are assigned a zero-dispersive flux boundary condition, while bottom and top are 
Dirichlet boundaries with specified salt mass fractions of 0.0 and 0.1, respectively. Maximum fluid 
density is 1070 kg/m3 at the top. 
 Initial conditions for the simulations are obtained by using simulation results of an unfractured 
HRL-problem with Rayleigh number 10 (no convection) as proposed by Weatherill et al. (2004), 
which corresponds to a linear decrease of both density and salinity. At the central node of the 
domain, an initial perturbation of the salinity field is applied by increasing the initial salt mass 
fraction by 10%. The homogeneous solute version of the unfractured HRL problem will be 
referred to as “base case”. Its steady state solution for Rayleigh number 60 is presented in Fig. 2. 
 
 

                    
Fig. 1 Conceptual model of the unfractured HRL problem (“base case”). 

 
 

  
Fig. 2 Unfractured HRL problem – isochlors and standardized flow vectors for Rayleigh number 60. 
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Fractured HRL problem  

An equidistant, orthogonal network of discrete fractures is added to the base case. Lateral 
boundaries are chosen such that they coincide with the location of fractures. The reason is that 
fracture flow is predominantly along the fracture due to its high conductivity and, therefore, 
fractures act as no-flow boundaries. Hence, placing fractures on boundaries guarantees that lateral 
flow boundaries do not influence the flow field. For symmetrical reasons, fracture aperture of 
boundary fractures is adjusted so that their permeability is only half the permeability of fractures 
inside the domain. Starting with fracture spacing H (fracture level 1), fracture spacing is 
systematically halved to obtain the next fracture level. The densest fracture network (fracture level 
6) consists of 65 vertical and 33 horizontal fractures including the four boundary half-fractures. 
 Each fractured HRL problem is compared to the base case. As the Rayleigh number is only 
applicable to homogeneous porous media, the equivalent permeability is used for comparison. The 
equivalent permeability keq (m2) remains constant for each set of fracture networks. This is 
achieved by keeping matrix permeability constant and decreasing the fracture aperture whenever 
fracture spacing is decreased. The equivalent permeability in the z-direction (vertical) is calculated 
using the harmonic mean to include horizontal fractures and the arithmetic mean to include 
vertical fractures: 
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where (2B) is the fracture spacing (m), kf is the fracture permeability (m2), and (2b) is the fracture 
aperture (m). The permeability in the vertical direction with only vertical fractures considered is 
called kz (m2) and the matrix permeability is kM (m2). For the scenarios considered in this study, the 
horizontal fractures hardly influence keq. As fracture spacing is identical in both, the horizontal and 
vertical direction, the fractured medium is isotropic.  
 
 
RESULTS 

 
Modification of flow patterns 

The influence of fractures on free convective flow is studied. Stepwise refined fracture networks 
are added to the base case, while retaining the equivalent permeability that corresponds to the 
Rayleigh number of 60. Two fractured cases are presented here, whose hydraulic parameters are 
listed in Table 1. 
 
 
Table 1 Fracture networks and permeabilities for two fractured HRL settings. Equivalent permeability is keq 
= 9.6 × 10-16 m2 in all simulations. 
 Case 1 

kM  = 9.0 × 10-16 m2 
Case 2  
kM  = 1.0 × 10-16 m2 

Fracture 
level 

fracture spacing   
(m) 

fracture aperture 
(µm) 

kf/kM 
(·103) 

fracture aperture  
(µm) 

kf/kM 
(·103) 

1 10 19.4 35 46.9 1835 
2   5 15.4 22 37.2 1156 
3   2.5 12.2 14 29.6   728 
4   1.25   9.7   9 23.5   459 
5   0.625   7.7    6 18.6   289 
6   0.3125   6.1   3 14.8   182 
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 Matrix permeability for case 1 (9.0 × 10-16 m2) is very similar to that of the unfractured HRL 
problem (9.6 × 10-16 m2). Accordingly, fracture apertures are small such that fracture permeability 
contributes little to the equivalent permeability (keq). Matrix permeability for case 2 is 1/9 of the 
matrix permeability of case 1. Consequently, fracture apertures in case 2 are more than twice as 
large as in case 1 in order to retain keq. Thus, the kf/kM ratios for case 1 are much smaller than for 
case 2, as illustrated in Table 1.  
 Both cases are compared to the base case with the same equivalent permeability. The 
simulation results for the base case (isochlors and flow vectors) can be seen in Fig. 2. The local 
salt mass fraction at the horizontal cross section at half of the domain height was compared 
visually (Fig. 3(a),(b)) and by using the root mean square error (Fig. 4) in order to quantify 
differences. 
 
 

 
Fig. 3 (a) Salt mass fraction profile at cross section for case 1 (graphs for fracture level 2–6 are 
identical) and (b) salt mass fraction profile at cross section for case 2. 

 
 
 The two cases describe the transition zone between fractures being relevant to the flow 
patterns and fractures having only minor influence on the flow field. Most scenarios, including the 
unfractured base case, show upwelling at the lateral boundaries and central downwelling, which 
leads to the formation of two convections cells. Only fracture level 2 of case 2 has four convection 

(a) 

(b) 
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cells with downwelling in the centre and at the lateral boundaries and upwelling in and around the 
fractures at X = 5 m and X = 15 m. For each fracture level, the difference of the salt mass fraction 
profiles from the one of the unfractured HRL problem is much greater for case 2 than for case 1. 
The difference is greatest where the number of convection cells differs. The difference is small 
when fracture spacing is small and/or the contribution of fracture permeability to the equivalent 
permeability of the medium is minor, i.e. fracture aperture is small.  
 
 

 
Fig. 4 Root mean square error (logarithmic y-axis) of salt mass fraction profiles, each case compared to 
unfractured HRL problem (base case). 

 
 
Onset of convection 

For the parameters used in this study, Rac is reached at an equivalent permeability of 6.32 ×  
10-16 m2. For smaller permeabilities, the unfractured system is stable and purely diffusive. The 
fractured system, represented by the above mentioned case 2, was studied for equivalent 
permeabilities around that critical Rayleigh number. Matrix permeability is kept at 1 × 10-16 m2 and 
fracture aperture is lowered to achieve smaller equivalent permeabilities. The results are compared 
using the mass flux through the top layer, expressed by the dimensionless Sherwood number (Sh). 
The Sherwood number compares total mass flux j (kg m-2 s-1) for each simulation with the 
diffusive mass flux for the stable case. Sh is 1 for stable and purely diffusive systems and increases 
as free convection begins. 
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 The Sherwood number is plotted versus equivalent permeability in Fig. 5 (Rayleigh number for 
the unfractured base case). For the fractured system with large fracture spacing (fracture level 1) the 
system becomes unstable at an equivalent permeability of 3.8 × 10-16 m2 which is smaller than the 
one related to the critical Rayleigh number of 4π2. For intermediate fracture spacings (fracture 
 
 

 
Fig. 5 Onset of convection: Sherwood number versus equivalent permeability and Rayleigh number. 
Fracture level 2 has four convection cells, unfractured HRL and all other fracture levels have two 
convection cells. 
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level 3), a higher equivalent permeability (6.7·× 10-16 m2) than in the unfractured case is required to 
destabilize the system. For smaller fracture spacings and apertures, the required equivalent 
permeability for the onset of convection approximates that of the unfractured base case, as seen for 
fracture levels 4–6 in Fig. 5.  
 The total mass flux through the upper layer is not only dependent on the equivalent 
permeability, but differs for each fracture network. For fracture level 2, the system has a differing 
number of convection cells and therefore, the curve of the Sherwood number has a different shape. 
 
 
CONCLUSIONS 

Comparison of density dependent flow and transport in homogeneous and fractured porous media 
shows that orthogonal regular fracture networks do influence the modes of free convective flow, 
even if the equivalent permeability of the two media is identical. The influence of fractures 
increases with increasing fracture aperture and with decreasing fracture spacing. Different flow 
patterns and different rates of mass transport can result. Stability of the system is influenced by the 
presence of fractures. Sparsely spread orthogonal fractures promote free convection, while fracture 
networks with intermediate fracture spacing restrain it and denser orthogonal fracture networks 
hardly influence the onset of convection. Therefore, if dealing with fractured porous media, it is 
not sufficient just to know its equivalent permeability to predict free convective flow phenomena. 
The geometry of the fracture network has to be considered as well. The influence of artificial 
regular orthogonal fracture networks is presented here, but more realistic irregular networks 
require further research.  
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