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Abstract As wind energy becomes an increasingly important component in the renewable energy portfolio, 
accurate wind forecasts become critical. We apply the PF.WRF model, a fully-coupled groundwater-to-
atmosphere model incorporating the parallel three-dimensional variably-saturated hydrologic model ParFlow 
and the Weather Research and Forecasting (WRF) atmospheric model to simulate the components of the 
hydrologic cycle from bedrock to the top of the atmosphere. Model components are coupled via moisture 
and energy fluxes in the Noah Land Surface Model. The fully-coupled model dynamically simulates 
important meteorological effects of interactions between the land surface and the atmosphere, controlled in 
part by soil moisture distribution and land surface energy flux partitioning. In this study, we complete 
ensemble simulations for three wind ramping events at a wind energy production site on the west coast of 
North America using varying stochastic random fields of subsurface hydraulic conductivity and forced with 
meteorological data from the North American Regional Reanalysis dataset for a series of wind ramp events. 
We attribute error between the modelled and observed data to uncertainty in the statistical representation of 
subsurface heterogeneity and errors in boundary condition forcing data.  
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INTRODUCTION 

Because of the intermittent nature of wind as an energy source, incorporating wind energy into 
power grids as part of a renewable energy portfolio is challenging. In the absence of viable storage 
options, accurate and reliable forecasting systems are critical for load balancing. In this study, we 
use a fully-coupled subsurface–land-surface–atmospheric model to generate a wind energy 
forecast ensemble based on uncertainty in characterization of subsurface hydraulic conductivity. It 
has been shown that uncertainty in the subsurface propagates into variables that are measurable in 
the atmosphere (Williams & Maxwell, 2011). The connection between the land surface and the 
atmosphere is established through moisture and energy fluxes, which are controlled in part by soil 
moisture distribution (Betts et al., 1996; Dirmeyer et al., 2000; Betts, 2004). 
 Soil moisture has been shown to have a significant effect on local and mesoscale atmospheric 
processes, manifested in temperature, precipitation and wind (e.g. Chen & Avissar, 1994). It has 
also been shown in work by Betts et al. (1996), Beljaars et al. (1996), Seuffert et al. (2002) and 
Holt et al. (2006), for example, that more advanced land surface formulations and soil moisture 
initialization in models generate more skilful forecasts. Traditionally, land surface and subsurface 
have been treated as simplified parameterizations in atmospheric forecast models (Golaz et al., 
2001; Kumar et al., 2006). The forecasting system presented here replaces this parameterization 
with a three-dimensional (3D) and dynamic physical subsurface to generate more realistic soil 
moisture conditions. Soil moisture is spatially heterogeneous over a wide range of scales 
(Famiglietti et al., 2008), temporally variable (Wendroth et al., 1999; Western et al., 2004), and 
dependent, in part, on hydraulic conductivity. Hydraulic conductivity is spatially heterogeneous 
and can vary across several orders of magnitude over short distances; however, it has been shown 
to be spatially correlated, allowing hydraulic conductivity to be represented statistically as a 
correlated random field (Rubin, 2003). We run an ensemble forecast simulation based on different, 
but statistically equivalent, realizations of subsurface hydraulic conductivity stochastic fields. 
Using the results of these ensembles, we can evaluate the circumstances under which hub-height 
wind speeds are affected by land-surface to atmosphere feedbacks, and when wind speeds are 
dominated by boundary forcing.  
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Fig. 1 Plan view of ensemble averaged stochastic field of (ln) hydraulic conductivity at the surface. 

 
 
METHODS 

We ran high-resolution wind forecast ensembles using the ParFlow-WRF (PF.WRF) model 
(Maxwell et al., 2011), a fully-coupled modelling system that incorporates the ParFlow hydrologic 
model (Ashby & Falgout, 1996; Jones & Woodward, 2001; Kollet & Maxwell, 2006) into the 
Weather Research and Forecasting–Advanced Research WRF (WRF-ARW) model (Skamarock & 
Klemp, 2008). Briefly, the models are coupled by replacing the simplified hydrology that it built 
into the WRF model with ParFlow, a variably-saturated surface and subsurface hydrologic model 
that solves Richards equation in three spatial dimensions for flow in the subsurface with integrated 
surface flow routing using the kinematic wave approximation. Mass and energy fluxes across the 
land surface are calculated using the Noah Land Surface Model (Chen & Dudhia, 2001), which is 
a component in the WRF model. The natural log transform of subsurface hydraulic conductivity is 
represented in this model as a correlated random field with specified mean, variance and 
correlation lengths. Hydraulic conductivity fields are generated using the Turning Bands random 
field algorithm (Tompson et al., 1989) following a correlation structure defined by the covariance  
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where σ2 is the variance, r is the separation distance, and l is the correlation length. A separate 
stochastic hydraulic conductivity field was generated for each forecast ensemble member. An 
example of a stochastic hydraulic conductivity field is shown in Fig. 1.  
 
Soil moisture initialization 

The spinup phase, a critical component in the use of a forecast model, was completed to generate 
realistic soil moisture conditions with which to initialize the subsurface portion of the fully-
coupled PF.WRF model. We used ParFlow coupled to the Common Land Model (CLM, Dai et al., 
2003) to simulate hourly soil moisture fields over a two year period from 1 September 2006 to 31 
August 2007 for each ensemble member. The simulation continued through 31 August 2008 to 
enable model initialization at any hour during the period from 1 September 2007 until 31 August 
2008. Meteorological reanalysis data from the North American Land Data Assimilation System 
(NLDAS, Mitchell et al., 2004) was used for atmospheric forcing for the spinup and initialization 
runs. While the time period employed in this spinup may not be sufficient for deep groundwater to 
reach an equilibrium state from its initial condition with the water table near the bottom of the 
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domain, it is expected that soil moisture at and near the surface equilibrates and perched water-
bearing zones begin to form within one rainy season in this location. Since the forecast model 
system used in this study focuses on land–surface to atmosphere feedbacks and their effects on 
wind speeds, moisture at and near the surface are considered critical. 
 
Forecast ensembles 

We completed forecast ensemble simulations for a wind ramping event from 12 to 14 February 
2008. We examine a 40-h time period encompassing the wind ramp. The ensemble was allowed to 
run for 24 h (simulated time) to spin up before the beginning of the observation periods. The 
forecast model ensemble comprises 11 ensemble members. Atmospheric initial conditions and 
boundary forcing are identical for each ensemble member. The ensemble members differ only in 
their hydraulic conductivity fields and their soil moisture initializations, which are directly 
correlated to hydraulic conductivity in the moisture limited scenario present in this ensemble. 
When the system is moisture limited, areas of low hydraulic conductivity tend to retain moisture 
for a longer duration compared with areas of high hydraulic conductivity (Atchley, 2011). The 
hydraulic conductivity fields used for the forecast ensemble runs are the same fields used in the 
corresponding spinup simulations, described above. 
 
 
RESULTS AND DISCUSSION 

The 40-h study period includes both low wind speeds prior to the ramp and the ramp itself in order 
to explore the capabilities of the fully-coupled hydrologic and atmospheric model before and 
during a wind ramp event. Our analysis of the model results is based on 2D time slices taken at 
peak wind speed during the ramping event, time series of domain averaged variables, and time 
series of variables at points with available wind speed observations. We observe variables as they 
relate serially from the subsurface into the atmosphere beginning with saturation (soil moisture 
divided by porosity, ranging from 0 to 1), which is a function of hydraulic conductivity among 
other variables. Latent heat flux represents evapotranspiration (ET) expressed in terms of energy, 
which embodies the interaction between the land surface and the atmosphere. We evaluate the 
effects of these land surface to atmosphere feedbacks on wind speed magnitude at hub-height 
(80 m above ground level). In addition to analysing the magnitudes of these variables, we also 
examine the relationships between their variances in order to evaluate the impact of the land 
surface on wind speed observations versus prevailing winds provided by the model boundary 
forcing data. 

The peak observed wind speed during the ramping event occurred at approximately 20:00 
UTC (12:00 PST) on 13 February 2008, 26 h into the observed period. The peak simulated wind 
speed occurred at 18:00 UTC, 24 h into the observed period. Because the saturation in the 
southwest portion of the domain is high (Fig. 2(a)), ET and latent heat flux are energy limited. The 
remainder of the domain is water limited. The small scale spatial variability in saturation is 
reproduced in the latent heat flux field, shown in Fig 2(b). Latent heat flux also displays a larger 
scale spatial pattern that resembles the pattern of variability seen in hub-height wind speed 
(Fig. 2(c)), providing a bridge between variability in the atmosphere and on the land surface. 
 Saturation at the surface does not change substantially through the observed time period. 
Latent heat flux shows a typical diurnal cycle in time series (Fig. 3). The ensemble variance in 
latent heat flux also follows this diurnal cycle. When latent heat flux shuts off during the night-
time hours, it does so for all ensemble members, and the variance drops to near zero. 
 The important relationship is between the variances of latent heat flux and hub-height wind 
speed, shown in Fig. 4. The simulated wind speeds increase at each location starting at hour 20 
(16:00 UTC, 13 February), and recover after hour 30. During this time, the variance in hub-height 
air temperature and hub-height wind speed drops to nearly zero, indicating that each ensemble 
member is reaching the same solution for the wind and temperature fields. This is an indication 
that the elevated wind speeds of the ramping event are decoupled from local land–atmosphere 



John L. Williams, III & Reed M. Maxwell 
 

330 
 

   
Fig. 2 Ensemble average timeslices at peak wind speed for the FEB08 ramping event: (a) saturation at 
the land surface; (b) latent heat flux; (c) hub-height wind speed. 
 
 

 
Fig. 3 Time series of latent heat flux at the sodar observation location for the FEB08 ramping event. 
 
 
 

 
Fig. 4 Comparison of variances of latent heat flux, hub-height air temperature and hub-height wind 
speed for the FEB08 ramping event at: (a) the 80-m meteorological observation tower, (b) the 50-m 
observation tower and (c) the sodar. 
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interactions, and instead are dominated by boundary forcing. The variance in latent heat flux 
follows a diurnal pattern independent of the wind speed; however, in the domain averaged time 
series, the daytime ensemble variance is dampened during the ramping event as compared to the 
variance during the previous day. The higher variances in hub-height temperature and wind speed 
when the wind speed is lower indicate that the effects of land surface feedbacks with the 
atmosphere may be more localized during calm wind periods. 
 
 
CONCLUSIONS 

Based on the results of this study, we make the following conclusions regarding the wind forecast 
model ensembles we completed using PF.WRF. Wind ramps at this scale and at this location are 
strongly influenced by external forcing. The influence of land-surface to atmosphere feedbacks are 
mostly observed in the model at low wind speeds, but boundary forcing appears to control the 
higher wind speeds. This forecast model appears to capture the magnitude of the wind speeds 
associated with the ramping events with reasonable accuracy. The timing of the wind ramping 
events appears to be controlled by the forcing data. Errors in timing in the forcing data are likely 
carried into the model output. As shown by Williams & Maxwell (2011), assimilating observed 
hydraulic conductivity data could also improve the forecast by reducing uncertainty in subsurface 
characterization and in variables that depend directly or indirectly on hydraulic conductivity. We 
believe the spatial and temporal accuracy of this forecasting system could be further improved by 
expanding the domain to capture the non-localized effects of soil moisture heterogeneity. 
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