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Abstract Feedbacks between the land surface and the atmosphere, manifested as mass and energy fluxes, 
are strongly correlated with soil moisture under dry conditions, making soil moisture an important factor in 
land–atmosphere interactions. We show that uncertainty in subsurface properties propagate into atmospheric 
variables, and therefore reduction of uncertainty in hydraulic conductivity will propagate through land–
atmosphere feedbacks to yield more accurate weather forecasts. Using ParFlow-WRF, a fully-coupled 
groundwater-to-atmosphere model, we demonstrate responses in land–atmosphere feedbacks and wind 
patterns due to subsurface heterogeneity. An idealized domain with heterogeneous subsurface properties is 
used in ensembles of coupled-simulations. These ensembles are generated by varying the spatial location of 
the subsurface properties, while honouring the global statistics and correlation structure, an approach 
common to the hydrologic sciences but never-before used in atmospheric simulations. We clearly show that 
different realizations of hydraulic conductivity produce variation in soil moisture, latent heat flux and wind 
for both point and domain-averaged quantities. A single random field is chosen as the “actual” case and 
varying amounts of hydraulic conductivity data are sampled from this realization. Using these conditional 
Monte Carlo simulations, we incorporate subsurface data into the ensemble of realizations. We also show 
that the difference between the ensemble mean prediction and the actual saturation, latent heat flux and wind 
speed are reduced significantly via conditioning of hydraulic conductivity. By reducing uncertainty 
associated with land–atmosphere feedback mechanisms, we also reduce uncertainty in both spatially 
distributed and synoptic wind speed magnitudes, thus improving our ability to make more accurate forecasts 
important for many applications such as wind energy. 
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INTRODUCTION 

The direct effects of subsurface heterogeneity have not been included in atmospheric studies to 
date. While the land surface and groundwater have historically been treated as simplified systems 
in atmospheric forecast and prediction models (Golaz et al., 2001; Kumar et al., 2006), early work 
by Chen & Avissar (1994), among others, has shown that soil moisture has a profound effect on 
local and mesoscale atmospheric processes. It has also been shown in work by Betts et al. (1996), 
Beljaars et al. (1996), Seuffert et al. (2002) and Holt et al. (2006), for example, that more 
advanced land surface model formulations and initialization, which generate more realistic soil 
moisture fields, result in better skill in mesoscale, regional and local scale weather forecasts. The 
reliance of these land surface parameterizations on accurate representations of surface soil 
moisture fields can be problematic because soil moisture is a transient quantity that is variable and 
heterogeneous in space and time (Wendroth et al., 1999; Western et al., 2004; Famiglietti et al., 
2008). Hydraulic conductivity, while highly variable and heterogeneous in space (several orders of 
magnitude), is static in time and has been shown to exhibit spatial correlation (Rubin, 2003). The 
uncertainty in the hydraulic conductivity correlated random field can be evaluated through 
multiple realizations in Monte Carlo ensemble simulations (Gelhar, 1986), and reduced by 
assimilating observational data (Rehfeldt et al., 1992). 

Ensemble, or stochastic approaches are common in both the atmospheric and 
hydrologic/hydro-geologic sciences. However the approaches used in each of the communities 
differ significantly. Atmospheric ensembles, from numerical weather prediction to climate change 
simulations, are commonly generated through perturbations of initial conditions and choice of 
model parameterization (e.g. Leutbecher & Palmer, 2008), while ensembles in hydrogeology are 
motivated through uncertainty in input parameters, typically spatial variability in the hydraulic 
conductivity, K (e.g. Criminisi et al., 1997; Nowak et al., 2010). A common subsurface 
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characterization approach in risk assessment, solute transport and aquifer remediation studies 
employs Monte Carlo simulation ensembles to back-calculate K using observations of solute 
concentration or arrival times to condition realizations of the subsurface (e.g. Graham & 
McLaughlin, 1989; Katul et al., 1993; James & Gorelick, 1994; Harvey & Gorelick, 1995; Yeh et 
al., 2005). Another approach directly conditions subsurface realizations to observed hydraulic 
conductivity data by assimilating point observations into a statistical representation of the 
subsurface (Maxwell et al., 1999). 

We apply a conditioning method whereby the distribution of hydraulic conductivity values in 
a correlated stochastic random field is controlled by enforcing “observed” point values drawn from 
a control, or “truth,” simulation using a linear regression technique through which the stochastic 
random field honours both the observational data and the specified global statistics (Goovaerts, 
1997). Using a Monte Carlo simulation technique for both unconditioned and conditioned 
simulations, we show that hydraulic conductivity, saturation, latent heat flux and wind speed 
magnitudes more closely match hypothetical observed data, and that improvements in atmospheric 
ensembles can be achieved by assimilating subsurface data. 
 
 
METHODS 

We use PF.WRF to simulate subsurface, surface and atmospheric conditions in a hypothetical 15 × 
15 km basin. PF.WRF is a combination of the mesoscale Weather Research and Forecasting (WRF) 
atmospheric model (Skamarock & Klemp, 2008) and ParFlow, a 3D variably-saturated subsurface 
model that simulates both subsurface and surface flow via an overland-flow boundary condition 
(Ashby & Falgout, 1996; Jones & Woodward, 2001; Kollet & Maxwell, 2006). The two models 
are coupled via mass and energy fluxes passed through the Noah Land Surface Model (Chen & 
Dudhia, 2001), resulting in a single model of the hydrologic cycle (Maxwell et al., 2010). Details 
of the coupling process, along with model equations, are presented by Maxwell et al. (2010). 

Using PF.WRF, we ran four sets of Monte Carlo simulations. Each simulation comprised 10 
realizations using different, yet statistically equivalent, heterogeneous K fields in the subsurface. 
One additional realization, with its own random seed not included in the unconditional ensemble, 
was used to represent the control (CTRL) conditions of the hypothetical domain. The conditioned 
sets of Monte Carlo simulations used the same statistical parameters and random seeds to generate 
the random fields as the unconditioned sets, but each was conditioned with an increasing number 
of data points drawn from the CTRL hydraulic conductivity field. We ran simulations with 60, 120 
and 200 points of conditioning data (hereafter referred to as CO60, CO120 and CO200, 
respectively) sampled from the K field of the CTRL case, in addition to the unconditioned (NO) 
case. Specifics of the methods used in this study are detailed by Williams & Maxwell (2011). 
 
 
RESULTS AND DISCUSSION 

We focus our analysis on saturation, latent heat flux—variables which provide an indicator of 
surface conditions as they relate to land–atmosphere feedbacks—and wind speed magnitude as the 
primary atmospheric variable of interest. We also focus on these variables as we expect the most 
direct and significant effect of conditional simulation on K, then saturation, then latent heat and 
finally wind speed magnitude, spanning the subsurface to the atmosphere. We show results only 
for the unconditioned (NO) and 200 conditioning points (CO200) endpoint cases. Results from the 
cases with 60 and 120 conditioning points fall within the bounds of these endpoints. 

We first examine K, saturation and latent heat flux at the surface, and wind speeds at the 
pressure level closest to the surface in two dimensions at a time slice 8.0 h following the cessation 
of uniform rainfall, corresponding to the peak domain averaged wind speed magnitude. We 
examine the lowest elevation pressure level because, with a nominal vertical resolution of 
approximately 200 m, this is the level for which a wind forecast would be most relevant to wind 
energy applications. We compare the mean squared residual (γ) for the unconditioned and 
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conditioned cases, calculated as: 

 
where X is the individual measurement for a realization and n is the number of realizations. This 
measure was used to quantify the residual between simulated and CTRL and to capture the 
variance within the ensemble in a single metric. 
 
 

 
Fig. 1 Pointwise results at time t = 8.0 h after cessation of rainfall. The left column shows the CTRL 
fields of K, saturation, latent heat flux and wind speed (top to bottom). The remaining plots show mean 
squared residuals g between simulated realizations and CTRL conditions for the NO case (centre) and 
the CO200 case (right). 

 
 

Hydraulic conductivity, shown in the first row of Fig. 1, shows high mean squared residual (g) 
values at several points in the NO case. With conditioning, we see significant reduction in the g 
values throughout the conditioned area. As expected, g goes to zero at the conditioning points 
where the observed value of K is enforced. The spatial effect of the enforced K values can be 
clearly seen in the reductions of g values in the vicinity of the conditioning points. Similar 
behaviour is seen for saturation (second row of Fig. 1), owing to the strong correlation between 
saturation and hydraulic conductivity. Latent heat flux (third row of Fig. 1), heat transfer from the 
surface via evapotranspiration, is a process that is limited by water availability and strongly 
correlated with saturation. As can be expected with this strong correlation, the behaviour of latent 
heat flux closely resembles that of saturation and K. We also see small changes in g values for 
latent heat flux in the eastern part of the domain outside the conditioned area, indicating that the 
effects of conditioning the subsurface may influence land–atmosphere feedbacks and weather 
patterns, not only in the area where conditioning takes place but elsewhere as well. 

Wind speed magnitude, shown in the bottom row of Fig. 1, exhibits the highest g values where 
the wind speed is highest for the NO case. The strongest winds in the CTRL case and in each 
ensemble average are predominantly from the west, defining clear up- and downwind directions. 
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While the differences in g values between the unconditioned and conditioned cases are not as 
dramatic on a domain-wide basis for wind as they are for land based variables, the influence of 
subsurface conditioning is clear, both in and out of the conditioned area, particularly in the high 
wind speed areas. Also noteworthy is the reduction in g values downwind of the strongest winds 
on the eastern part of the domain outside the conditioned area. The effects of subsurface 
conditioning are distributed across the domain and are not localized in the conditioning area, in 
contrast to the land-based variables. 

 
 

 
Fig. 2 Domain-averaged time series. 

 
 

We then analyse domain-averaged time series for saturation and latent heat averaged over the 
land surface and wind speed magnitude averaged over the entire atmospheric domain (Fig. 2). For 
saturation, latent heat flux and wind speed, there is a clear improvement in forecast accuracy 
between the ensemble averages and the CTRL conditions from the unconditioned to the 
conditioned cases. Also notable is the reduced spread of the ensemble members (shown in light 
grey). For the wind case, the ensemble spread does not appear to reduce, however more ensemble 
members appear to concentrate around the CTRL conditions. While the maximum variance 
between realizations and the ensemble average does not decrease appreciably with conditioning (in 
contrast with saturation and latent heat flux), the maximum mean squared residual does, indicating 
a greater likelihood that the ensemble members fall near the CTRL values. This is evident at the 
peak CTRL wind shown in Fig. 2 for the CO200 case where more than half of the realizations 
approach the peak at time 8.0 h—a significant improvement. Only one realization approaches the 
peak in the NO case. 
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CONCLUSION 

Using a fully-coupled subsurface-to-atmosphere model, we demonstrate that an atmospheric 
simulation ensemble can be generated with different realizations of subsurface K: a new finding. 
We further demonstrate that by conditioning K with an increasing number of observations, it is 
possible to reduce uncertainties in not only subsurface variables like saturation, but also in 
atmospheric variables such as wind; also a new finding. It has previously been established that 
ABL conditions are tightly coupled to soil moisture and latent heat flux from the land surface. It 
has also been previously established that soil moisture is a function of, among other variables, K. 
Through conditioning of K fields, we bridge these previous findings and demonstrate reduced 
uncertainty in the predicted soil moisture field, in latent heat flux and in wind speed. The effects of 
conditioning the K field are evident in both spatially distributed cases and domain-averaged cases. 

The reduction of uncertainty in K and the associated reduction of uncertainty in atmospheric 
variables is applicable to wind energy forecasts and to weather and atmospheric forecasts in 
general. Using a relatively small number of measurable observations, it is possible to reduce 
uncertainty in wind speed forecasts, which should prove useful in a wide range of atmospheric 
forecasting applications and climate change predictions. 
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