Validation of the global evapotranspiration algorithm (MOD16) in two contrasting tropical land cover types

ANDERSON L. RUHOFF1,2, WALTER COLLISCHONN2, ADRIANO R. PAZ3, HUMBERTO R. ROCHA4, LUIZ E. O. C. ARAGAO5, YADVINDER MALHI6, QIAOZHEN MU7 & STEVE W. RUNNING7

1 Instituto de Ciências Humanas e da Informação, Universidade Federal do Rio Grande, Rio Grande, Brazil
2 Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
3 Departamento de Engenharia Civil e Ambiental, Universidade Federal da Paraíba, João Pessoa, Brazil
4 Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo, São Paulo, Brazil
5 School of Geography, University of Exeter, Exeter, UK
6 Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
7 School of Forestry, University of Montana, Missoula 59812, USA

Abstract

This article presents results from NASA’s EOS MOD16 Project, which aims to estimate global evapotranspiration (ET) using remote sensing and meteorological data. Our specific objective in this study was to evaluate the accuracy of the newly improved MOD16 algorithm at the Rio Grande basin, southern Brazil, using (i) ET observations at two eddy covariance (EC) flux tower sites in different land covers (savanna and sugar cane plantations) and (ii) ET estimations from hydrological model during 2001. Our results show that MOD16 8 d average, monthly ET and annual ET values are consistent with observations of the two EC sites and the hydrological model. The RMSE and bias analyses indicate that the model overestimates ET values for savannas and underestimates these values for the sugar cane and the whole basin average. Estimates are very consistent in the dry season, while the larger prediction errors occur in the wet season.

Key words: eddy covariance; evapotranspiration; hydrological model; LBA; MGB; MOD16; MODIS; remote sensing