The origins of water sources in the region of Annaba: confirmation using isotopic tools

LASSAAD GHRIEB¹, LARBI DJABRI¹, HICHAM ZERROUKI¹, AZZEDINE HANI¹ & ANTONIO PULIDO BOSCH²
¹ Laboratory of Water Resource and Sustainable Development University of Annaba, Algeria
ghrieblassaad@yahoo.fr
² University of Almeria, Spain

Abstract The studied area contains several superficial or deep water tables, which constitute the main sources of groundwater. The complexity of the exchange between groundwater and superficial water, as well as the casting of urban and industrial wastes remain unclear and require the application of isotopic techniques. Hence, a campaign involving 48 samples was conducted. We attempted to find the links between those groundwaters. We noticed that the water levels of oxygen 18 (¹⁸O) range from –6.5‰ in Orelait to 0.12‰ in Oued Meboudja. The majority of oxygen-18 values are homogenous and less than –5‰. However, some values belong to the evaporated water area, indicating an enrichment of these waters. The isotopic study showed that evaporation is important in the studied region.

Key words groundwater, isotopic tools, evaporation, oxygen-18, superficial or deep water tables

The investigation of sediment processes in rivers by means of the Acoustic Doppler Profiler

M. GUERRERO
Hydraulic Engineering Laboratory-DICAM, University of Bologna, Italy
massimo.guerrero@unibo.it

Abstract The measurement of sediment processes at the scale of a river cross-section is desirable for the evaluation of many issues related to river hydro-morphodynamics, such as the calibration and validation of numerical models for predicting the climate change impacts on water resources and efforts of maintenance of the navigation channel and other hydraulic works. Suspended- and bed-load have traditionally been measured by cumbersome techniques that are difficult to apply in large rivers. The acoustics for the investigation of small-scale sedimentological processes gained acceptance in the marine community because of its ability to simultaneously profile sediment concentration and size distribution, non-intrusively, and with high temporal and spatial resolution. The application of these methods in true riverine case studies presents additional difficulties, mainly related to water depths and stream currents that limit sound propagation into water and challenge the instruments deployment, especially during floods. This article introduces the motivations for using the ADCP for sediment processes investigation other than for flow discharge measurement, summarizes the developed methods and indicates future desirable improvements. In addition, an application on the Po River in Italy is presented, focusing on the calibration of the existing software by means of ADCP recordings. The calibrated model will assist in planning the dredging activities to maintain the navigation channel and the intake of a pump station for irrigation that is periodically obstructed with a sandbar.

Key words sediment transport, rivers, Acoustic Doppler Current Profiler