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Abstract We used maximum entropy to model streambank erosion potential (SEP) in a central Appalachian 
watershed to help prioritize sites for management. Model development included measuring erosion rates, 
application of a quantitative approach to locate Target Eroding Areas (TEAs), and creation of maps of 
boundary conditions. We successfully constructed a probability distribution of TEAs using the program 
Maxent. All model evaluation procedures indicated that the model was an excellent predictor, and that the 
major environmental variables controlling these processes were streambank slope, soil characteristics, bank 
position, and underlying geology. A classification scheme with low, moderate, and high levels of SEP derived 
from logistic model output was able to differentiate sites with low erosion potential from sites with moderate 
and high erosion potential. A major application of this type of modelling framework is to address uncertainty 
in stream restoration planning, ultimately helping to bridge the gap between restoration science and practice. 
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INTRODUCTION 

A growing number of scientists agree that where we are doing restoration and the scale at which 
projects are implemented, are critical for effective restoration (Wohl et al., 2005). Predictive models 
and assessment tools that are currently used in restoration planning vary greatly in parameter 
selection and precision, which has implications for the scale and applications for which they are 
relevant (Merritt et al., 2003). While several of these models have been useful for watershed 
management (Rosgen, 2001; Simon et al., 2003), a niche remains for process models that provide a 
balance between high resolution prediction and broad-scale applicability. Objective decision support 
tools that incorporate geographic information system (GIS) and probability modelling could increase 
efficiency of restoration site selection and facilitate development of watershed-scale restoration 
plans (Wohl et al., 2005) by elucidating relative streambank erosion potential (SEP) within the 
context of the watershed. Recent improvements and availability of remote sensing data (Goetz, 
2006) used in conjunction with Bayesian reasoning has the potential to improve the resolution and 
precision of SEP prediction over large spatial extents (Regmi et al., 2010). 

We applied maximum entropy, a general purpose, machine learning method that enables 
prediction from incomplete information (Phillips et al., 2006), to estimate the spatial distribution of 
target eroding areas (TEAs) undergoing excessive streambank erosion. We then used this probability 
distribution to create a classification scheme for streambank erosion potential (SEP). We believe 
this approach has great potential for enhancing watershed management by helping identify sites with 
the greatest restoration potential, which is critical for long-term success (Wohl et al., 2005).   

 
STUDY AREA AND METHODS 

A model of SEP was constructed for a portion of the Cacapon River watershed within the larger 
Potomac River basin. The watershed drains about 2320 km2 within Hardy, Hampshire, and Morgan 
counties, West Virginia. Climate is considered humid continental, characterized by hot summers, 
cold winters, and average annual precipitation near 900 mm. Streams in the study area typically flow 
through wide, slightly entrenched, shallow channels (Pitchford, 2012). We predicted SEP for  
113 km of 1st–3rd order streams with median daily flowrates of 2–31 m3/s in the mainstem and 
0.04–1.2 m3/s in a representative tributary during the study period (available from the USGS at 
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www.waterdata.usgs.gov). Elevation within the study area ranged within 210–423 m and the 
underlying geology consisted of alluvium (47%), shale (29%), sandstone (17%), and limestone (6%) 
(West Virginia Geological and Economic Survey, 2011).   

Erosion rates were monitored at a total of 151 sites distributed among 30 stream reaches using 
erosion pin and streambank profile surveys (Hupp et al., 2009) during 2010–2011. Streambank 
migration rates were quantified using repeated measurements of 122 cm long, 0.95 cm diameter 
reinforcing rods to calculate an average migration rate for each site in m/year (Hupp et al., 2009). 
Also, repeated streambank profile surveys were conducted by measuring the horizontal distance 
from a level survey rod to the face of the streambank at 15 cm vertical increments to calculate a rate 
of change in sediment storage for each site. To determine which survey locations represent TEAs, 
we used cluster and outlier analysis (Anselin Local Moran’s I) within the program ESRI® 
ArcMapTM 10.0 to determine locations of significant clustering of high erosion rates. Sites that had 
statistically significant clustering of high erosion rates (Z > 1.65; α < 0.1) using either survey method 
were considered to be TEAs.   

Airborne Light Detection and Ranging (LiDAR) was flown over the study area in April 2010 by 
the West Virginia University Natural Resource Analysis Center (WVUNRAC). Data were captured 
at an altitude of 1676 m and a speed of 135 knots using an Optech Inc. (Ontario, Canada) ALTM3100 
with a vertical accuracy of 15 cm. These data were post-processed to create models for bare ground 
and vegetation within the study area. LiDAR and other available data were used to create 
environmental layers to represent features associated with streambank erosion (Table 1).    

 
Table 1 Environmental variables used to model streambank erosion potential (SEP) in the Cacapon River 
Watershed, West Virginia. 

Variable Source Significance Min Max Mean (SE) 
Geology WVGES Geological characteristics  N/A N/A N/A 
Elevation Bare earth DEM Position in the watershed 209 423 292 (0.06) 
Slope Calculated Steepness 0 81 9.6 (0.01) 
Aspect Calculated Orientation, exposure 0 360 181 (0.11) 
Curvature Calculated Steepness, concavity, convexity –910 669 –0.2 (0.02) 
Profile curvature Calculated Steepness, concavity, convexity –395 481 0.2 (0.01) 
Plan curvature Calculated Steepness, concavity, convexity –514 378 0.0 (0.01) 
Solar radiation Calculated Sub-aerial processes 93 189 1 423 170 1 229 151 (117) 
Flow accumulation Calculated Run-off velocity, potential energy 0 24 641 804 119 192 (1 354) 
Moisture index Calculated Soil water content –4 17 0.0 (0.00) 
Bank stress index Calculated Shear stress N/A N/A N/A 
Vegetation height Vegetation DEM Surcharge, buffer characteristics –11 77 7.8 (0.01) 
Soil type SSURGO Soil characteristics N/A N/A N/A 
Soil erodibility SSURGO  Soil shear strength 0 0.4 0.2 (0.00) 
 

The computer program, Maxent, version 3.3.2, was used to model SEP by estimating the 
unknown distribution (π) over the set of pixels in the study area. Maxent assigned a probability of 
occurrence to each point (𝑥𝑥), that is approximated by solving for the entropy of 𝜋𝜋� using the equation:  

𝐻𝐻 (𝜋𝜋�) =  −∑ 𝜋𝜋� (𝑥𝑥) ln𝜋𝜋�(𝑥𝑥)𝑥𝑥𝑥𝑥𝑥𝑥       (1) 
where ln is the natural logarithm, and 𝜋𝜋� is a positive value representing the probability of occurrence 
for the target phenomena that sums to one over the pixels in the study extent.  
 Thirty replicate bootstrap runs were conducted using 25% of the training sites that represent 
TEAs. Evaluation of model performance included a threshold-dependent, one-tailed binomial test 
on model omission and predicted area to determine if the maximum entropy distribution was 
predicting better than random. A threshold independent, area under curve (AUC) analysis was also 
used, where a value of <0.5 indicates the model predicts no better than random, 0.5–0.7 indicates 
fair predictive capacity, 0.7–0.9 indicates a good predictive capacity, and values >0.9 are indicative 
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of an excellent model (Phillips et al., 2006). The influence of environmental variables on the 
distribution of TEAs was also generated by Maxent to help assess the influence of each 
environmental variable on the prediction.  
 A final map was created from the logistic model output to represent three levels of SEP (i.e. 
low, moderate, and high). We conducted a one-way Analysis of Variance (ANOVA) to test the 
strength of our classification scheme, using normally distributed migration rates (m/year) as the 
dependent variable. A significant ANOVA was followed with a Tukey’s Honest Significant 
Difference (HSD) post hoc test to compare migration rates between low, moderate, and high SEP.  
Significance for all tests was set at the α = 0.05 level. 
 
RESULTS 

Migration rates ranged from –0.11 to 0.95 m/year with an average migration rate of 0.24 m/year (SE 
= 0.02). Net change in sediment storage ranged from a net loss of 3.04 m2/year to a net gain of 0.80 
m2/year with an average net loss of 0.39 m2/year (SE = 0.06). A total of 29 TEAs were identified 
from the 151 monitored locations. Twenty-five TEAs were detected based on migration rates of 
0.53–0.93 m/year, and six TEAs were detected based on net sediment losses of 1.2–2.29 m2/year.   

Nine of the original 14 environmental variables contributed unique information to the model 
and were used to create the final model of SEP. The average training AUC value for 30 model runs 
was 0.994 (SE = 0.0004), which indicated that the model had excellent predictive capacity. The 
binomial omission test was significant (P < 0.01, one tailed) for all data partitions at all selected 
threshold values indicating that the model predicted much better than random. The average logistic 
threshold for the minimum training presence (MTP) for all model runs was 0.209 (SE = 0.02). All 
logistic threshold values greater than the MTP were considered to have moderate or high SEP, which 
included 3.1% of the study extent. The most important environmental variables in the model were 
slope (32.7%), soil type (29.2%), bank stress index (20.6%), and underlying geology (8.7%)  
(Table 2).   
 
Table 2 Average percent contribution and permutation importance values for each predictor variable in a 
maximum entropy model of stream bank erosion potential (SEP). 
Variable Percent contribution (%) Permutation importancea (%) 
Slope 32.7 48.6 
Soil type 29.2 25.9 
Bank stress index 20.6 9.1 
Geology 8.7 5.2 
Moisture index 3.6 7.2 
Vegetation height 2.6 0.9 
Elevation 1.4 2.6 
Aspect 1.2 0.4 
Plan Curvature 0.1 0 
a Permutation importance values for each variable are determined by randomly permuting the variable values 
among the training points and quantifying the ensuing decrease in training AUC. 
 

The logistic probability of a TEA increased with increasing slope up to approximately 25° and 
then declined as slope increased until an asymptote was reached just above a logistic probability of 
50% (Fig. 1(a)). Potomac soils were associated with the highest probability followed closely by 
Fluvaquents and Philo-2 soils compared to other soil types (Table 3; Fig. 1(b)). Areas along the 
outside of meander bends had the highest probability of being a TEA followed by the inside of 
meander bends, and other levels of bank stress having similar probability (Fig. 1(c)).  
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Fig. 1 The influence of: (a) slope (°), (b) soil type, (c) bank stress index, and (d) underlying geology on 
streambank erosion potential (SEP) in the Cacapon River watershed.   

 

Table 3 Percent sand, bulk density, soil erodibility for highly erodible soil types in the Cacapon River 
Watershed. Percent sand and bulk density are estimated ranges from 0–150 cm soil depth. Soil erodibility is 
an average value over 0–150 cm. 
Soil type Percent sand (%) Bulk density Soil erodibility (Kf) 
Potomac 43 – 100 1.2 – 1.6 0.24 
Philo – 1 0 – 95 1.2 – 1.4 0.32 
Fluvaquents 0 – 60 1.0 – 1.5 0.39 
Lithic udorthents 0 – 50 1.2 – 1.4 0.32 
Philo – 2  0 – 95 1.2 – 1.4 0.29 
 
 

With regard to underlying geology, areas comprised of alluvium had the highest probability of 
being a TEA with areas containing sandstone, limestone, and shale units exhibiting respective 
decreases in probability (Fig. 1(d)).   

Our classification scheme built from logistic model output shows that 96.9% (8.5 km2) of the 
study extent was below the MTP, and therefore had low SEP (Fig. 2). Areas with moderate and high 
SEP made up 2.7% (0.24 km2) and 0.3% (0.03 km2) of the study extent, respectively. An ANOVA 
revealed that our classification scheme was a reliable predictor of streambank migration rate (F1,149 

= 33.2; P < 0.001), as sites with low SEP, which averaged 0.22 m/year (SE = 0.02) were different 
from sites with moderate SEP with an average of 0.41 m/year (SE = 0.03) (P < 0.001), and from 
sites with high SEP, which averaged 0.45 m/year (SE = 0.04)(P < 0.001).   
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Fig. 2 Logistic output from a maximum entropy model of streambank erosion potential (SEP) in a portion 
of the Cacapon River Watershed, West Virginia.   

 
CONCLUSIONS AND PERSPECTIVES         

All model validation procedures indicated that our model performed well and our classification 
scheme was useful for predicting SEP. Thus, we believe this approach could be applied in other 
watersheds to enhance management by providing a high resolution prediction over large spatial 
extents. The most important predictor was slope where bank slopes of 25° had the highest probability 
of being a TEA. Steeper slopes are common in the watershed, but are typically composed of shale 
and thus have greatly reduced erosion rates compared to alluvial reaches. Soil type was also 
important as Fluvaquents and Philo soils, which contain as much as 85% sand in deeper horizons 
(i.e. 1–2 m) and Potomac soils, which contain as much as 100% sand (USDA, 2011), were associated 
with high SEP. Deeper soil horizons are often exposed in incised channels where soils with high 
sand content are very susceptible to fluvial erosion (Micheli & Kirchner, 2002; Simon et al., 2008; 
Pitchford, 2012). The outside of meander bends had higher SEP compared to other levels of bank 
stress. This was not surprising as these areas are exposed to the highest amount of shear stress 
(Bloom, 1998). With regard to underlying geology, alluvium had the highest SEP. This was also not 
surprising as alluvium is previously eroded material (Bloom, 1998). Overall, the influence of 
boundary conditions was in agreement with other studies that have shown streambank slope, soil 
characteristics, bank position, and underlying geology are important predictors of SEP (Simon et 
al., 2003).    
 Our classification scheme was effective for differentiating sites with low SEP from sites with 
moderate and high SEP, but could not distinguish between moderate and high levels of SEP. 
Although variability in streambank migration in these classes overlapped, a larger sample size 
among sites with high SEP would improve the ability to detect a difference. Overall, our results 
show that this approach has utility for gauging relative stability at the watershed (50–500 km2), 
segment (100–10 000 m2), and reach (10–1000 m2) scale and could help prevent unnecessary 
construction in areas that are relatively stable, yet may appear to be degrading. Such areas can 
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become a liability following restoration activity that results in reductions in flood plain roughness, 
which can cause bank failure (Smith & Prestegaard, 2005; Pitchford, 2012).   
 We created only three levels of SEP from our model, but we could have easily created more 
categories of SEP, or generated a continuous prediction to enhance relative comparisons within the 
watershed. This could be very insightful for prioritizing sites for management and could help avoid 
attempts to stabilize streambanks with low probability of success. For example, the model can help 
to differentiate between areas with clay soils positioned along straight reaches (lower SEP), which 
have higher probability of restoration success compared to areas with sandy soils on the outside of 
meander bends (high SEP). Although an area with high SEP may erode at higher rates, it may be too 
dynamic to attempt streambank stabilization. Other applications for the model include greater 
understanding of conditions associated with stable sites within the watershed, which could help to 
inform restoration design similar to the reference reach approach used in Natural Channel Design 
(NCD) (Rosgen, 1998).   

Overall, we believe that this maximum entropy model of SEP is a great example of an 
assessment tool that could enhance watershed planning by helping to prioritize sites for 
management, assess the relative importance of boundary conditions, and identify characteristics 
associated with stable sites within the watershed. This type of process model is critical for bridging 
the gap between restoration science and practice, which will ultimately improve the success of 
watershed management initiatives worldwide.  
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