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Abstract Reference crop evapotranspiration (ETo) estimation is of importance in irrigation water 
management for the calculation of crop water requirements and its scheduling, rainfall–runoff modelling and 
numerous other water resources studies. This paper developed the Kohonen Self-Organizing Map (KSOM), 
unsupervised artificial neural networks software sensors to predict the ETo. This was achieved by using the 
powerful clustering capability of the KSOM to analyse the multi-dimensional data array of estimated 
Penman-Monteith ETo and different subsets of input climatic variables. Data obtained at two locations, 
Edinburgh (UK) and Udaipur (India), were used in order to demonstrate the versatility of the approach. The 
findings indicate that the KSOM-based ETo estimates were in good agreement with those obtained using the 
conventional FAO Penman-Monteith formulation at both locations. A further comparison of the KSOM 
estimates with other commonly used empirical methods for the ETo, e.g. Thornthwaite, Priestley-Taylor and 
Hargreaves, showed that the former were far superior. This offers significant potential for accurate 
estimation of the ETo in regions of the world where the needed climatic data are unavailable for the 
implementation of the full Penman-Monteith formulation.    
Key words reference crop evapotranspiration; crop water requirements; Kohonen Self-Organizing Map;  
neural networks; FAO Penman-Monteith method 
 
 
INTRODUCTION 

Knowledge of the reference crop evapotranspiration is very important in various fields of water 
resources, such as estimation of crop water requirements, scheduling of irrigation water 
application, rainfall–runoff modelling, land suitability evaluation, and general catchment water 
balance studies. Because of its significance, several direct methods based on field measurement 
using different kinds of lysimeters have been employed, but they are time-consuming and require 
precision in the experimental set-up in order to achieve a good result. Consequently, significant 
research activities are being carried out to develop reliable and accurate methods that use observed 
weather data as inputs for the estimation of the reference crop evapotranspiration, ETo (George et 
al., 2002; Itenfisu et al., 2003).  
 Of the numerous estimation methods available for the reference crop evapotranspiration, the 
Penman-Monteith (PM) model has been recommended by the FAO based on extensive 
comparative studies in different climatic conditions. However, there are practical difficulties with 
applying the PM model in practice, notably the complexity of the associated expressions and more 
importantly the huge number of climatic data required as input, most of which are not routinely 
measured in several countries. A way of avoiding the complexity and difficulties associated with 
the PM-ETo estimation is to use data-driven artificial intelligence (AI) modelling techniques, such 
as artificial neural networks (ANNs), which are able to map any non-linear relationship among 
variables, no matter how complex, without the need to specify explicitly the mathematical form of 
the model. Zanetti et al. (2007) present an extensive review of feed-forward back-propagation 
ANN modelling of evapotranspiration. In most of these studies, minimum climatological data were 
used as inputs to produce relatively accurate estimates of the PM-ETo. However, a problem with 
the feed-forward back-propagation ANN is that it can be affected by missing values and outliers. 
Indeed, where such noise is available in the data, feed-forward ANNs have been known to give 
unrealistic results (Rustum et al., 2007). However, unsupervised ANNs, typified by the Kohonen 
Self Organizing Map (KSOM), perform a clustering of a large dimensional array into a smaller 
one of essential features (or best matching units, BMUs), thus making any inherent correlations 
between the vectors in the array much more visible. These features then become the basis of 
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predictions, implying that missing values, outliers or other types of noise are no hindrance when 
using the KSOM for prediction. 
 Despite this versatility of the KSOM, however, it has rarely seen any widespread application 
in hydrological modelling, especially in the modelling of the PM-ETo, although recent 
applications in water quality and wastewater treatment plant modelling have been reported 
(Rustum & Adeloye, 2007; Rustum et al., 2007, 2008). Therefore, the aim of this study is to use 
the KSOM to develop and test intelligent models to estimate the PM-ETo using easily observed 
weather data as inputs. Once the model learns to predict the PM-ETo using the training data set, 
the model will be stored and used for prediction using new input vectors. We will also test the 
KSOM models against established approximate ETo models such as Thornthwaite, Blaney-
Criddle, Hargreaves, etc. All of this will use data observed for two climatic conditions: a small 
experimental catchment in the temperate, sub-humid Edinburgh (UK) and a lake catchment in the 
arid Udaipur region of India, in order to test the versatility of the methodology. 
 
 
KOHONEN SELF-ORGANISING MAP (KSOM) 

Basics of the Kohonen Self-Organizing Map  

The KSOM (also called feature map or Kohonen map) is one of the most widely used artificial 
neural networks algorithms (Kohonen et al., 1996) and its principal goal is to transform an 
incoming signal pattern of arbitrary dimension into a two-dimensional discrete map. It involves 
clustering the input patterns in such a way that similar patterns are represented by the same output 
neurons, or by one of its neighbours (Back et al., 1998).  
 The KSOM consists of two layers: the multi-dimensional input layer and the competitive or 
output layer; both of these layers are fully interconnected as illustrated in Fig. 1(a). The output 
layer consists of M neurons arranged in a two-dimensional grid of nodes. Each node or neuron i (i 
= 1,2,…,M) is represented by an n-dimensional weight or reference vector Wi = [wi1,….,win], 
where n is the dimension of each input vector, i.e. the maximum number of variables in the input 
vector. In training, an input vector is randomly selected and its most similar reference vector is 
identified by determining the closest to it in terms of the Euclidian distance, Di: 

( ) MiwxmD
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=
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where xj is the j-th element of the current input vector; wij is the j-th element of the code vector i;  
 

(a)  
Fig. 1 (a) Illustration of the winning node and its neighbourhood in the Kohonen Self-Organizing Map; 
and (b) prediction of missing components of the input vector using the Kohonen Self-Organizing Map 
(BMU = best matching unit). 
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and mj is the so called “mask” which is used to include in (mj = 1), or exclude from (mj = 0), the 
calculation of the Euclidian distance, the contribution of a given element xj of the input vector. 
Once identified, the elements of the reference vector are updated and the process continues until 
some stated stopping criteria are reached. Rustum & Adeloye (2007) present additional compre-
hensive information about training the KSOM, including various indices for assessing its 
performance. 
 The application of the KSOM for prediction purposes is illustrated in Fig. 1(b) (Rustum & 
Adeloye, 2007). First, the model is trained using the available data set. Then the depleted vector, 
i.e. with the predictand either missing or deliberately removed, is presented to the KSOM to 
identify its BMU using the computed Di (equation (1)). The values for the missing variables are 
then obtained as their corresponding values in the BMU.  
 
 
METHODOLOGY 

Data base  

Daily data for both Edinburgh (UK) and Udaipur (India) were used. The Edinburgh weather 
station is located at 55°57′N, 3°13′W and at an altitude of 25 m a.s.l. and has a good quality record 
of weather data—air temperature, relative humidity, wind speed and incident solar radiation— 
spanning 1997–2006, i.e. 2282 daily records. The arid data were obtained from the meteorological 
observatory in Udaipur, India, at 24°35′N, 73°42′E, recording similar daily data to the Edinburgh 
station over five years, 2002–2006, i.e. a total of 1825 data points. Summary statistics of the 
weather variables together with the estimated PM-ETo are shown in Table 1 from which it is clear 
that the temperature, relative humidity and incident solar radiation at Udaipur are generally higher 
than those observed at Edinburgh. Indeed, the relative humidity at Udaipur, being close to 
saturation, is an indication that the potential evapotranspiration process will be less influenced by 
the aerodynamic term in comparison to the radiation term. A further observation in Table 1 is that 
PM-ETo estimates at the Udaipur site are much higher than similar estimates at the Edinburgh site, 
which is not surprising given the relatively temperate conditions at the latter.  
 
 
Table 1 Statistical characteristics of the data used for training and (validation). 
Variables:  Min.  Max.  Average Std  
Symbols Description Units UK India UK India UK India UK India 
Tmax Max. air 

temperature 
oC 1.26    

(2.65) 
14.5 
(19.6) 

23.98    
(21.55)

43.20 
(42.40)

12.2   
(12.20)

31.75 
(31.60) 

4.65 
(4.54) 

4.75 
(4.749)

Tmin Min. air 
temperature 

oC –6.21 
(–3.1) 

–1.5 
(1.0) 

15.28    
(13.10)

32.30 
(30.50)

6.2         
(6.01) 

16.24 
(17.20) 

4.07 
(3.99) 

7.96 
(7.81) 

Rhmax Max. relative 
humidity 

% 65.49 
(62.9) 

14.0 
(23.0) 

93.41     
90.39) 

98.00 
(100.0)

83.39    
(79.64)

69.27 
(77.71) 

4.87 
(4.77) 

20.20 
(17.91)

Rhmin Min. relative 
humidity 

% 18.56 
(26.5) 

5.0 
(10.0) 

85.97     
79.13) 

98.00 
(100.0)

60.21    
(52.16)

35.52 
 (41.18) 

11.61 
(11.81) 

21.15 
(21.38)

U2 Wind speed m/s 0.3     
(0.4) 

0.0 
(0.2) 

5.31       
(3.54) 

5.22 
(11.39)

1.26 
(1.15) 

1.03 
(1.18) 

0.83 
(0.65) 

0.79 
(0.86) 

Rs Solar  
radiation 

MJ/m2/d 0.8    
(1.0) 

6.36 
(8.54) 

18.48    
(13.91)

28.32 
(28.18)

4.9 
(4.71) 

19.48 
(19.12) 

3.87 
(3.24) 

4.61 
(4.99) 

N Maximum 
possible 
sunshine hours 

hours 6.7     
(6.7) 

1.0 
(1.0) 

17.32  
(17.32)

12.20 
(12.10)

12.11 
(12.23)

8.56 
(8.21) 

3.61 
(3.66) 

2.56 
(2.85) 

Ra Extraterrestrial 
radiation 

MJ/m2/d 4.1     
(4.1) 

22.9 
(22.9) 

41.50    
(41.50)

40.40 
(40.40)

22.29 
(22.79)

32.71 
(33.29) 

13.29 
(13.50) 

6.20 
(6.41) 

PM-ETo Penman-
Monteith 
reference 
group evapo-
transpiration  

mm/d 0.2    
(0.3) 

1.1 
(1.7) 

2.70       
(2.6) 

8.89 
(8.51) 

1.14 
(1.18) 

4.10 
(4.08) 

0.56 
(0.55) 

1.72 
(1.79) 
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KSOM analysis 

Three different combinations of weather data and PM-ETo were considered for the KSOM 
analysis, as detailed in Table 2. Model 1 contains the full complement of input weather data 
required for the PM-ETo, while models 2 and 3 contain sub-sets of these and are required to test 
the performance against some of the incomplete ETo methods in the literature. For each location, 
the available data record was partitioned into two, with a part being used for model training and 
the other for independent validation. Thus at Edinburgh, the first 1500 data vectors were used for 
training and the remaining 782 vectors went into validation. The corresponding figures at Udaipur 
were 1215 and 610, respectively.  

 
Table 2 Input weather variables for the KSOM models. 
Model Input variables (see Table 1) 
1 Tmax, Tmin, Rhmax, Rhmin, U2, Rs 
2 Tmax, Tmin, N, Ra 
3 Tmax, Tmin, N 
 
 
RESULTS AND DISCUSSION OF RESULTS 

KSOM models 

Due to lack of space, only the results of model 1 (see Table 2) are detailed, although as to be 
expected given the number of input variables used, model 1 was better than the other two. The 
component planes, a major feature of KSOM analysis, are shown in Fig. 2 and help to illustrate the 
associations or correlations between variables. The component planes show the values of the 
variables in each map unit that can be used to estimate the data variable of the input spaces 
(Vesanto et al., 2000). The planes are filled using coloured or grey shades and the way the 
gradients of these colours or greys relate is an indication of the correlation. Variables exhibiting 
parallel colour or grey gradients will have high positive correlations; anti-parallel gradient is 
indicative of negative correlations. For example in Fig. 2(a), grey gradients for the PM-ETo and 
Rs are parallel whereas those between the PM-ETo and RHmin are strongly anti-parallel at 
Edinburgh. Both these suggest strong positive correlation of PM-ETo with Rs and strong negative 
correlation with RHmin, which in turn indicates that both the mass transfer and solar radiation 
effects are equally significant in determining ETo at the UK site. At Udaipur, however, while the 
grey gradients of the PM-ETo and Rs component planes are strongly parallel, there was no clear-
cut pattern to the relationship between PM-ETo and RHmin grey gradients (see Fig. 2(b)). From the 
summary presented in Table 1, it is quite clear that the humidity deficit at Udaipur is very low and, 
hence, mass transfer is unlikely to have much influence on the ETo process, a fact now borne out 
by the component planes. Other correlations can be similarly visualized from the component 
planes and such information can become useful in identifying the most significant weather 
variables for the ETo in different locations so that available resources for data collection can be 
better targeted.  
 The performance of model 1 in predicting the PM-ETo during training is illustrated in the  
X–Y plots in Fig. 3 for both Edinburgh (R = 0.98) and Udaipur (R = 0.99), which is very good. 
Although the relevant plots are not shown here for lack of space, model 1 at both locations was 
equally good during validation, with the corresponding R = 0.97 at Edinburgh and R = 0.99 at 
Udaipur. Models 2 and 3, which used fewer weather input data, and whose full details have been 
omitted for lack of space, also recorded satisfactory performances in predicting the PM-ETo 
during both training and validation. For example at Edinburgh, the R values for model 2 were 0.96 
and 0.94, respectively, for training and validation, while the corresponding values for model 3 
were 0.97 and 0.95. At Udaipur, models 2 and 3 correlations during training and validation were 
both 0.98 and 0.99, respectively.  
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Fig. 2 SOM component planes (grey) for model 1 at (a) Edinburgh (UK) and (b) Udaipur (India). 
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Fig. 3 X–Y scatter plot of observed and KSOM-predicted PM-ETo during training: (a) Edinburgh and 
(b) Udaipur. 

 
Comparison of KSOM and established empirical models 
To demonstrate the performance of the KSOM models against other widely-used empirical ETo 
models, Fig. 4 compares the mean monthly evapotranspiration estimates of nine alternative models 
with the PM-ETo estimates for the training data sets. As seen in Fig. 4, whilst the three KSOM 
models nearly match the PM-ETo perfectly, none of the four empirical models tested: Hargreaves, 
Thornthwaite, Blaney-Criddle and Priestley-Taylor, in their basic forms were able to do so, 
especially during the summer months. As noted previously, empirical models are location- 
 

(a) 

(b) 
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Fig. 4 Comparison of estimated mean monthly ETo for nine different model assumptions with the 
training data set: (a) Edinburgh, and (b) Udaipur. 

 
specific and may not therefore be expected to do well at locations different from where they were 
developed. This is why it is recommended to calibrate these models against local climate before 
using them (Allen et al., 1998). However, as shown in Fig. 4, even the calibrated versions of these 
empirical models could not match the performance of any of the KSOM models based on the 
training data sets. Similar plots for the validation sets are available but are not shown here because 
of their striking similarity to Fig. 4(a) and (b). However, Table 3 contains the biases, i.e. model 
estimate minus PM-ETo, for the validation set, from which it is clear that the KSOM models are 
also far superior to the empirical models. 

 
CONCLUSIONS 
The current work presents a methodology based on the use of Kohonen Self-Organizing Map 
(KSOM) models to predict the PM-ETo for sub-humid and arid catchments. Extensive testing and  
 

(a) 

(b) 
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Table 3 Bias (mm) in estimated mean daily ETo at Edinburgh and Udaipur by different model assumptions 
during validation. Udaipur values are in parenthesis. 
Month 1 2 3 4 5 6 7 8 9 10 11 12 
KSOM1 0.03 

(–0.09) 
0.05 
(0.05) 

0.05 
(0.25) 

0.05 
(0.10) 

0.04 
(0.27) 

0.07 
(0.16) 

0.06 
(–0.02)

0.04 
(–0.07)

0.01 
(–0.06)

0.01 
(–0.03) 

0.04 
(0.02) 

0.01 
(–0.21)

             
KSOM2 0.1 

(–0.07) 
0.05 
(0.12) 

0.05 
(0.13) 

0.08 
(0.02) 

–0.04 
(0.15) 

–0.07 
(0.11) 

–0.07 
(–0.08)

0.03 
(0.02) 

–0.01 
(–0.08)

0.00 
(–0.07) 

0.09 
(–0.01) 

0.06 
(–0.12)

             
KSOM3 0.15 

(–0.14) 
0.04 
(–0.07) 

0.04 
(0.34) 

0.04 
(0.17) 

–0.04 
(0.19) 

–0.08 
(0.21) 

–0.07 
(0.01) 

0.03 
(0.13) 

0.06 
(–0.10)

0.04 
(–0.12) 

0.10 
(–0.02) 

0.06 
(–0.20)

             

Hargreaves 0.49 
(–1.17) 

0.25 
(–1.40) 

–0.06 
(–1.31) 

–0.30 
(–1.21)

–1.05 
(0.19) 

–1.59 
(0.27) 

–1.71 
(–0.25)

–1.23 
(–0.40)

–0.55 
(–0.57)

0.14 
(–1.16) 

0.43 
(–1.33) 

0.39 
(–1.12)

             

Hargreaves  
calibrated 

0.08 
(–0.28) 

0.00 
(–0.66) 

0.04 
(–0.62) 

0.28 
(–0.67)

–0.01 
(0.72) 

–0.24 
(0.85) 

–0.40 
(0.54) 

–0.24 
(0.45) 

–0.05 
(0.23) 

–0.02 
(–0.41) 

0.08 
(–0.50) 

–0.05 
(–0.21)

             

Thornthwaite 0.29 
(1.66) 

0.19 
(1.96) 

0.13 
(2.51) 

–0.01 
(2.69) 

–0.71 
(2.37) 

–1.75 
(2.35) 

–2.13 
(2.79) 

–1.74 
(2.44) 

–1.27 
(1.97) 

–0.60 
(1.70) 

–0.01 
(1.51) 

0.13 
(1.46) 

             

Thornthwaite  
calibrated 

0.02 
(–0.40) 

0.00 
(–0.13) 

0.15 
(0.42) 

0.46 
(0.56) 

0.19 
(0.18) 

–0.16 
(0.17) 

–0.41 
(0.71) 

–0.31 
(0.37) 

–0.23 
(–0.13)

–0.23 
(–0.40) 

–0.06 
(–0.56) 

–0.14 
(–0.60)

             

Blaney-Criddle  –0.92 
(–2.14) 

–1.40 
(–2.39) 

–1.82 
(–1.63) 

–2.22 
(–1.14)

–3.18 
(–0.79)

–4.09 
(–0.27)

–4.30 
(1.52) 

–3.66 
(0.90) 

–2.99 
(–0.53)

–1.92 
(–2.31) 

–1.25 
(–2.44) 

–1.00 
(–2.20)

             

Blaney-Criddle  
calibrated 

0.12 
(–1.40) 

0.00 
(–1.04) 

0.08 
(–0.35) 

0.34 
(0.58) 

0.07 
(1.40) 

–0.22 
(1.57) 

–0.41 
(1.46) 

–0.25 
(0.87) 

–0.16 
(0.16) 

–0.13 
(–0.92) 

0.06 
(–1.42) 

0.00 
(–1.52)

             

Priestley-
Taylor 

0.50 
(–0.27) 

0.47 
(–0.40) 

0.53 
(–0.44) 

0.57 
(0.30) 

0.34 
(0.95) 

0.13 
(0.68) 

0.11 
(–0.09)

0.25 
(–0.44)

0.36 
(–0.64)

0.42 
(–0.56) 

0.50 
(–0.38) 

0.41 
(–0.23)

             

Priestley-
Taylor  
calibrated  

0.12 
(0.02) 

0.11 
(–0.34) 

0.22 
(–0.50) 

0.40 
(0.11) 

0.24 
(0.62) 

0.07 
(0.36 

0.01 
(–0.07)

0.10 
(–0.40)

0.15 
(–0.68)

0.08 
(–0.55) 

0.13 
(–0.18) 

0.01 
(0.10) 

 
 
validation of the models showed that they can produce estimates comparable to the PM-ETo, even 
when forced with only a sub-set of the panoply of input weather data required to drive the full 
implementation of the PM-ETo. This was certainly the case for models 2 and 3 which, despite the 
fact that they used fewer input weather variables, still predicted the PM-ETo with correlations of at 
least 0.95. Additionally, for these two models only the minimum and maximum temperature (Tmin 
and Tmax) are required to be measured in order to estimate PM-ETo, making them a useful tool in 
poorly instrumented catchments. Similarly, the developed KSOM models outperformed some of 
the established empirical models for estimating evapotranspiration, both in their basic forms and 
when calibrated against the PM-ETo. This is a significant breakthrough for regions with 
inadequate data for evapotranspiration estimation.   
 A major feature of the KSOM modelling is that its predictive ability is unencumbered if some 
of its predictor variables are missing. Model 1, the best performing of the KSOM models, has the 
full complement of six input weather variables; however, unlike the PM-ETo calculations, the 
KSOM model will still predict the ETo if any of the six variables is missing. All of this offers 
promise for poorly instrumented catchments such as those in the developing world.   
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