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Abstract Characterizing the impact of climate change on hydrology is not as simple as feeding a previously 
calibrated hydrological model with future climate scenarios. Nevertheless, hydrological modelling is often 
considered as a small contributor to the overall uncertainty in climate change impact studies. Running a 
model under conditions that can be significantly different from those used for calibration raises questions 
relative to the actual extrapolation capacity of the model. As hydrological models (as complex as they may 
be) are always a simplification of reality, they can never fully integrate all aspects of the rainfall–runoff 
relationship. Consequently, we prefer to consider them as patients that can certainly be in good health in 
average conditions, but may also be affected with pathologies when exposed to unusual conditions (namely 
conditions they have not been properly trained or structured for). Focusing on the robustness issues linked 
with non-stationary climatic conditions, this paper reviews some of the typical pathologies rainfall–runoff 
models can suffer from when asked to predict discharges under climate conditions different from the 
calibration ones. 
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INTRODUCTION 
Characterizing the impact of climate change on hydrology is an increasing field of study through-
out the world. However, this task is sensitive to the numerous uncertainties induced by the 
complexity of the modelling chain (emissions scenarios → global circulation models → 
downscaling techniques → rainfall–runoff models). Several authors agree that the major sources 
of uncertainty are the first steps of the modelling chain (mainly emissions scenarios and climate 
models) and that hydrological modelling is a lower contributor to total uncertainty (Wilby, 2005; 
Wilby & Harris, 2006; Kay et al., 2009; Prudhomme & Davies, 2009). Whether or not progress is 
made by climate modellers to improve the estimation of future climatic forcings, it is our 
responsibility as hydrologists to provide trustworthy simulations when a rainfall–runoff (RR) 
model is run under conditions that may be significantly different to those used for calibration (e.g. 
future vs current conditions). Indeed, many unknowns still remain concerning the actual climate 
extrapolation capacity of hydrological models. In this paper, we review the main robustness issues 
of RR models which are of importance when models are used in a climate change context.  
 
The ideal case: the healthy model 
We will not discuss in detail here how an ideal model should look (number of modules, stores, 
spatial representation of inputs, etc.). Let us just mention that such a model should be able to 
integrate correctly the various aspects of the rainfall–runoff relationship, and that it should then be 
able to simulate correct discharges when provided with correct inputs. Within the context of this 
article, one should insist on this latter aspect by adding that the model performances should remain 
good at the application stage, however climatically-different the simulation period may be. 
 
The hard reality: models are full of simplifications that make them dependent on the 
calibration period 
Due to the lack of knowledge on the true functioning of the hydrological system, the lack of data 
for model construction and the complexity of measuring each process within the hydrological 
sphere, a RR model incorporates large simplifications (Murphy et al., 2006). All hydrological 
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models remain at some point conceptual and empirical. Thus, their parameters require manual or 
automatic calibration. One would ideally like to measure these parameters in the field, but due to 
the model conceptualisation, direct use of field parameter estimations is rarely possible in practice 
and calibration remains necessary to reduce bias (Merz et al., 2011). Moreover, whichever 
approach is used, the estimated parameters may not be the “true” representative parameters of the 
processes in the catchment, leading to uncertainties in the prediction of the model variable (Abebe 
et al., 2010). As discussed below, model parameters may indeed be affected to various extents by 
various elements during calibration, which may divert them from their correct values, i.e. those 
values that would be optimal over the long term. 
 
 
A REVIEW OF COMMON PATHOLOGIES  
Dependency of model parameters on the inputs quality and availability 
Quite logically, the quality of a RR model is highly dependent on the inputs it was fed with during 
calibration. Therefore, incorrect estimation of the input or a too short calibration period may affect 
the model parameter determination and thus bias simulations. 
 Several studies have assessed the impact of input quality on the optimal parameter set 
obtained from calibration. Among them, one can mention the work of Andréassian et al. (2001, 
2004) and Oudin et al. (2006). They studied the impact that random and systematic errors in 
rainfall and potential evapotranspiration (PE) estimates can have on model performance and 
parameter values for simple RR models. They showed how the models can sometimes use their 
free parameters to smooth input errors, without decreasing the quality of simulation. Such 
conclusions are in agreement with the findings of Kokkonen & Jakeman (2001) who worked on 
the impact of PE estimates on model performance. 
 Apart from errors in input rainfall depths, several works were made on the effect of incorrect 
estimation of spatial variability (e.g. poor coverage of the basin with a gauging network), as 
reviewed by Brath et al. (2004). These authors also carried out some tests on the influence of 
reducing the rainfall gauging network for a distributed model. Interestingly, they found that model 
performance did not noticeably decrease when fed with a spatially uniform rainfall, as long as the 
network size remained sufficient to measure the correct amount of overall rainfall. These results 
contrast with the previous findings of Chaubey et al. (1999) who observed a decrease in 
performance of the Agricultural Non-Point Source pollution model (AGNPS) and a higher 
variability in the estimated parameters when the spatial variability of rainfall was deteriorated. 
 The dependency of model parameters on input quality may also exist for inputs other than 
climate forcings, as illustrated by Apaydin et al. (2006). These authors studied the transferability 
of the parameters of the SLURP distributed model between two temporally spaced periods. They 
observed a greater performance loss when transferring model parameters from the oldest to the 
most recent period than the contrary. They attributed this finding to the wider range of 
precipitation, but also to the better distribution of land cover data in the recent period. This yielded 
a more accurate estimation of the model parameters. 
 Finally, the length of the calibration period may significantly affect model calibration if it is 
too short. A large number of studies were carried out on this topic and were reviewed by Perrin et 
al. (2007). The general rule about calibration length is to have climatic and flow conditions 
sufficiently diverse to give a representative picture of their natural variability, thus allowing for an 
exhaustive activation of the hydrological processes at work in the basin. Beyond this statement, 
very few recommendations exist on the minimum length required for calibration. Indeed, 
depending on the studies and models used, this length may vary from two to ten years (Yapo et al., 
1996; Anctil et al., 2004; Brath et al., 2004; Perrin et al., 2007). 
 
Dependency of model parameters on the climate of the calibration period 
Once the free parameters have been calibrated, the model structure should ideally provide a good 
simulation of the rainfall–runoff relationship. Therefore, it should be able to simulate discharges 
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without significant performance loss, when fed with other climate inputs. In reality, model 
parameters may sometimes be dependent on the climate they have experienced during the 
calibration period. However, one must say there is currently no consensus in the literature on this 
dependency or on the impact it may have on the model simulations. 
 Merz et al. (2011) calibrated the semi-distributed HBV model on a series of 5-year periods 
between 1976 and 2006 for 273 Austrian catchments. They showed how the parameters 
representing snow and soil moisture processes could vary depending on the calibration period. 
They established a link between these variations and climatic characteristics such as air 
temperature and potential evapotranspiration. Similarly, Wagener et al. (2003) found in their test 
using the DYNIA approach (see next section) that the model parameter that controls rapid 
groundwater recharge or rapid surface runoff was dependent on the calibration climate. 
Furthermore, they illustrated how this parameter had two optima both with relatively high 
identifiability: small values were required during summer periods whereas high values were 
needed during storm events.  
 With regard to these findings, questions can be raised on the validity of using a model to 
simulate discharges under climatic conditions that are different from the calibration ones. Several 
authors investigated the topic carrying out various tests derived from the differential split-sample 
test proposed by Klemeš (1986). One can mention the work of Wilby (2005) on uncertainties in 
climate change impact studies. He found that the projections’ uncertainty due to the choice of the 
calibration period could be of the same order as the uncertainty due to greenhouse gas emission 
scenarios. He concluded that the transferability of model parameters was dependent on the 
representativeness of the calibration period. Also working on this issue of climatic parameter 
transferability, Vaze et al. (2010) calibrated four commonly-used models (SIMHYD, Sacramento, 
MARG, IHACRES) on 61 catchments in southeast Australia over the wettest and driest 10, 20, 30 
and 40 years and simulated the other periods. They illustrated how the performance decrease and 
bias increase between calibration and validation could be related to the difference in annual 
rainfall. They concluded that models calibrated on average or wet conditions had more difficulty 
in simulating dry periods than the other way round. Finally, one can mention the study by Choi & 
Beven (2007), who used the Generalized Likelihood Uncertainty Estimator (GLUE) approach to 
evaluate TOPMODEL over one basin in South Korea. After sampling the time series into several 
clusters according to their hydrological similarities, they found that parameters that were optimal 
for some clusters were not convenient for use on others (particularly those obtained on the dry 
clusters, which contrasts with the findings of Vaze et al. (2010)). 
 However, some authors have drawn conclusions regarding the ability of hydrological models 
calibrated in specific climatic conditions to be used in others. This is the case for Chiew et al. 
(2009) who calibrated the model SIMHYD over a long period and used it to simulate discharges 
on particularly wet and dry periods. The authors concluded on the suitability of RR models for 
climate change impact studies when they are calibrated against a sufficiently long period. 
However, clear decreases of model performance were observed in some cases between calibration 
and simulation, and the authors considered the subject as worthy of further investigation. One can 
also mention the case of Niel et al. (2003), who studied 17 African catchments and noted time 
stable parameters for about two thirds of the basins, and found no obvious link between parameter 
values and climate for the last third, although rainfall and runoff significantly decreased over the 
years. 
 Although no general consensus has been reached yet, and despite the differences in model 
sensitivity, it seems that parameters cannot be directly transferred from one period to another 
without paying attention to the climatic differences. Obviously this applies to all climate change 
impact studies. 
 
Low identifiability of parameter values 

The identifiability level of a parameter expresses how well the parameter is defined within a model 
structure (Abebe et al., 2010). This level is high if changes in the parameter value have significant 
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effects on the simulated discharges and thus on the calibration criteria, allowing an accurate 
estimation of the parameter correct value. Conversely, this level can be low if it has only little 
effect on the discharges. Potentially, a random value could then be considered as optimal. Methods 
to analyse parameters identifiability are usually based on a Monte Carlo approach. Wilby (2005) 
carried out such an analysis on the CATCHMOD model by testing random parameter sets and 
looking at the evolution of the simulation’s quality relative to individual parameter values. 
Another method proposed to investigate this question is the Dynamic Identifiability Analysis 
(DYNIA) of Wagener et al. (2003) that aims to identify the most informative parts of the 
hydrograph for the calibration of each model parameter. Applying this method on a five-parameter 
RR model, the authors showed that some parts of the hydrograph (recession limbs, rainy periods, 
etc.) contain more information for the identification of some parameters. 
 Low identifiability may happen in the case of structural problems in the model, when a 
parameter does not have a precise role in the model functioning (in spite of the modeller’s 
intention), or when several parameters interact and compensate each other (Wilby, 2005; Abebe et 
al., 2010). However, low identifiability issues are generally not independent from the two 
“pathologies” mentioned above. Indeed, insufficient input quality or climate variability (linked 
with calibration length) will induce problems on the determination of the model parameters. 
 The low identifiability of a parameter may or may not have an impact on model performance: 
it will have no impact if the process represented by the parameter is insignificant in the case study 
(e.g. the parameters of a snow module on a basin without snow influence). But if the process in 
question is significant in some periods and not in others, then it may have a serious impact, 
because the choice of the calibration period will influence the correctness of the parameter 
estimate. Wilby (2005) found that many parameters of the CATCHMOD model had a low 
identifiability on the Thames basin. However, some of them showed better identifiability when 
calibrated on wet periods. Abebe et al. (2010) applied DYNIA on the HBV model. They also 
found that identifiability was higher on wet periods than on dry ones. Using the same methodology 
on the WaSiM-ETH model, Wriedt & Rode (2006) illustrated how the snowmelt runoff parameter 
was only identifiable during winter runoff and how low-flow conditions were not suitable to 
calibrate parameters controlling fast runoff processes. 
 One could argue that the above results are trivial and that nothing will be problematic as long 
as the calibration period is rich enough in terms of climate variability. However, this is not 
completely true: hydrologists may face cases where a process that was insignificant during the 
calibration period (in spite of its length), becomes relevant in the period of interest for simulation. 
This is particularly true in climate change impact studies. For example, if groundwater 
exchanges between catchments have a visible impact on discharges only during extended 
periods of drought, they will not be properly accounted for in a model that was calibrated on a 
period where droughts were not severe enough. Similar examples could be made with glacier 
melt processes in mountainous areas, or regarding the role of evapotranspiration in the water 
balance. 
 
 
DISCUSSION 

The various pathologies listed in this paper cause real problems to hydrologists but should not be 
seen as fatal. Some preventive and/or curative measures may exist, or they could be found, 
provided that the problem source is clearly identified first. Following Andréassian et al. (2001), 
we propose to classify model parameters in four categories (considering that calibrations are 
always made with sufficient input data, i.e. several years): 
 

– Category A The parameter remains stable over time (it is not affected by changes in the 
climate of the calibration period or variance in the quality of input estimates). An example of 
such a parameter can be found in the simplest models, where one unique parameter controls 
the time shift between rainfall and flow (see Oudin et al., 2006). 
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– Category B The parameter is affected by wrong estimates of the inputs from the calibration 
period. However, it converges towards a single value when the input quality is improved. 
Examples of such parameters are the evapotranspiration module parameters, the rainfall 
multiplication factor or the exchange with groundwater if it is the only way to adjust the water 
balance (see Andréassian et al., 2001). 

 

– Category C The parameter is affected by the climatic properties of the calibration period. 
This may happen either because the level of identifiability varies depending on the climate, 
or because the model parameters depend on the climate of the calibration period due to 
model conceptualization deficiency (Wriedt & Rode, 2006; Abebe et al., 2010; Merz et al., 
2011). 

 

– Category D The parameter has an erratic behaviour with no apparent link to the inputs. This 
reveals the poor adaptation of the model for the case study. It may happen if the process 
represented by the parameter is not significant, or if the model shows conceptual problems 
inducing equifinality through parameters compensation (Mo et al., 2006; Abebe et al., 2010). 
Parameters of this category are clearly undesirable in a hydrological model. 

 
 Parameters from category A are the ideal ones for modellers since they are easy to calibrate 
and can be globally trusted whatever the future conditions of model use. 

 Parameters from category B may be the source of problems if they are transferred between 
periods having different inputs quality/availability levels (e.g. the measurements network has 
evolved and provide more accurate inputs). However, the problem can be addressed by working on 
the input quality and choosing cautiously the calibration period to ensure that the model 
parameters do not compensate for incorrect input estimates. This may lead to the use of only the 
most recent years, as suggested by Apaydin et al. (2006). 

 Parameters from categories C and D are the most problematic, particularly in the case of 
climate change impact studies where the model use conditions are known to be different from the 
calibration ones. However, some sub-distinctions can be made: 

1. The parameter falls in category C or D because the process it represents is not significant for 
the available time series, although the model structure is parsimonious enough to ensure the 
need for the parameter. If possible, one should first try to increase the length of the calibration 
period (and thus the climate variability), which may add periods where the process is 
significant. If all available data are already used, then the problem can be solved either by 
setting the parameter to an a priori coherent value or simply by inactivating the related part of 
the model (if the process in question is believed to remain insignificant). 

2. The parameter falls in category C because it has a clear dependence on the climatic conditions 
of the calibration period, although its identifiability is high. One solution is to extract from the 
historical data the sub-periods that are climatically closest to the test period, and calibrate the 
model on those only. However, this remains problematic if the test conditions are different 
from all the available data, as is often the case in climate change impact studies. In this case, a 
second solution could be to use the established relation between parameter values and climate 
to extrapolate the parameter values corresponding to the future climate. However, this option is 
qualified by Merz et al. (2011) as inelegant since it does not respect the usual philosophy of 
modelling which is to have time invariant parameters that are able to work correctly under time 
variant conditions (such as the rainfall or the air temperature). 

3. For all the other situations, the impossibility of determining the parameter’s true value is 
closely linked with the inappropriate conceptualization of the model. Therefore, no simple 
solution exists because modellers may be reluctant to change the structure of a model they have 
been using for years or decades. 
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CONCLUSIONS 

All hydrological models remain simplifications of the real world and incorporate parameters that 
need to be calibrated to some extent. However, these parameters may sometimes be dependent on 
the calibration conditions and, therefore, not be appropriate for use under other conditions. Making 
a parallel with the medical domain, we reviewed here some of the “pathologies” a model may 
suffer from due to the parameters’ dependency on the calibration conditions (e.g. input quality, 
average climate, diversity of hydrological processes, etc.). Although these findings are highly 
dependent on the model and given case study, they raise questions regarding the validity of 
transferring model parameters from one period to another that is temporarily spaced and/or 
climatically different. This is of particular concern for climate change studies where the model 
application conditions are known to be different from the calibration ones. 
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