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Abstract An ensemble of stochastic daily rainfall projections has been generated for 30 stations across 
southeastern Australia using the downscaling Nonhomogeneous Hidden Markov Model (NHMM), which 
was driven by atmospheric predictors from four climate models for three IPCC emissions scenarios (A1B, 
A2, B1) and for two periods (2046–2065 and 2081–2100). The results indicate that the annual rainfall is 
projected to decrease for both periods for all scenarios and climate models, with the exception of a slight 
increase for one GCM for the A2 scenario in 2081–2100. However, there is a seasonal difference: two 
downscaled GCMs consistently project a decline of summer rainfall, and two an increase of summer rainfall. 
In contrast, all four downscaled GCMs show a decrease of winter rainfall. Since winter rainfall accounts for 
two-thirds of the annual rainfall and produces the majority of streamflow for this region, this decrease in 
winter rainfall would cause additional water availability concerns in the southern Murray-Darling Basin, 
given that water shortage is already a critical problem in the region. In addition, the annual maximum daily 
rainfall is projected to intensify in the future, particularly by the end of century; the maximum length of 
consecutive dry days is projected to increase and, correspondingly, the maximum length of consecutive wet 
days is projected to decrease. These changes in daily sequencing, combined with fewer events of reduced 
amount, would lead to drier catchment soil profiles and further reduce runoff potential, and hence also have 
streamflow and water availability implications. 
Key words Murray-Darling Basin; Nonhomogeneous Hidden Markov Model (NHMM); southeastern Australia; 
statistical downscaling; climate change  
 
 
INTRODUCTION 
Research in the South Eastern Australian Climate Initiative (SEACI) commenced in 2006 to 
investigate the causes, impacts and prediction of climate variability and change in southeastern 
Australia (CSIRO, 2010). The SEACI study area covers all of Victoria, southern South Australia 
(including the agricultural areas of the Eyre Peninsula), and the Murray-Darling Basin (MDB). 
The MDB is Australia’s most important agricultural region accounting for 40% of the gross value 
of agricultural production (Pigram, 2000) and 70% of all water used for irrigated agriculture in 
Australia. Precipitation and streamflow have experienced a significant decreasing trend in recent 
years, which is of immense concern to MDB water managers and irrigators (Cai & Cowan, 2008; 
Potter et al., 2010). Therefore, future climate, particularly rainfall, is of utmost interest to resource 
management, agriculture and water-users in the region (Yu et al., 2010). 
 The present generation of global and regional climate models are restricted in their usefulness 
for many sub-grid scale applications, including hydrology and water resources, due to their coarse 
spatial resolution. Downscaling attempts to resolve the scale discrepancy between climate change 
scenarios and the resolution required for hydrological and other impact assessment. It is based on 
the assumption that large-scale weather exhibits a strong influence on local-scale weather (Maraun 
et al., 2010). Two approaches to downscaling exist. Dynamical downscaling nests a regional 
climate model (RCM) into the GCM to represent the atmospheric physics with a higher grid box 
resolution within a limited area of interest. Statistical downscaling establishes statistical links 
between large-scale weather circulation characteristics (such as mean sea level pressure or 
geopotential height) and observed local-scale weather (Maraun et al., 2010).  

The objectives of this study are to generate an ensemble of stochastic daily rainfall projections 
for 30 stations across southeastern Australia using the downscaling Nonhomogeneous Hidden 
Markov Model (NHMM), driven by atmospheric predictors from four climate models (CCAM, 
GFDL, Mk35 and MRI) for three IPCC emissions scenarios (A1B, A2, B1) and for two periods 
(2046–2065 and 2081–2100), and to assess projected changes in hydrologically relevant rainfall 
characteristics such as annual rainfall, seasonal rainfall, maximum, 99th, 95th and 90th percentile 
daily rainfall, as well as frequencies and maximum consecutive statistics of dry and wet days. 
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DATA AND METHODS 
Data sets 
There are three types of daily data required for statistical downscaling applications (Frost et al., 
2011): (a) historical rainfall data at meteorological stations; (b) large spatial-scale reanalysis 
predictors used with (a) for calibration and verification of the statistical downscaling model; and 
(c) GCM predictors interpolated to the same spatial scale as the reanalysis data, which for given 
scenarios into the future are used as the predictors to produce downscaled rainfall projections. 
 The 30 daily rainfall stations chosen for this study are located in the southern MDB in south-
eastern Australia, between 142–150°E longitude and 33.5–38°S latitude. The sites chosen range 
from high altitude eastern regions (snow in winter season) to semi-arid sites in the west, with a 
range of climatological influences affecting rainfall (Chiew et al., 2010; Frost et al., 2011). 
 NCEP/NCAR Reanalysis (NNR) data, from 1961 to the present (Kalnay et al., 1996), are used 
in the statistical downscaling model calibration. Many reanalysis variables are generated on a 2.5° 
by 2.5° latitude–longitude grid including sea level pressure, temperature and specific humidity at 
several levels in the atmosphere. Predictors are selected from a 6 × 5 grid domain of the 2.5° by 
2.5° latitude–longitude grid centred on the chosen rainfall sites (for more details see Frost et al., 
2011).  
 Predictor data were also extracted from four GCMs: (a) CSIRO Mk3.5; (b) CCAM 
(atmosphere far field nudged and SSTs from CSIRO Mk3.0); (c) GFDL-CM2.0; and (d) MRI-
CGM2.3.2a (as described at the website of the Program for Climate Model Diagnosis and 
Intercomparison (PCMDI) http://www-pcmdi.llnl.gov/). These were selected based on their 
current-day reproduction of the predictor fields required by the NHMM stochastic downscaling 
model as described in Charles & Fu (2008). 

IPCC scenarios A1B, A2 and B1 are used in this paper. They were chosen due to data 
availability, however they do not represent the full range of possible climate change. The 
detailed description of these scenarios can be found at PCMDI website and IPCC reports (IPCC, 
2007).  

 
NHMM Model 

The Nonhomogeneous Hidden Markov Model (NHMM) of Hughes et al. (1999) was selected to 
downscale atmospheric predictors to multi-site daily precipitation occurrence; then conditional 
multiple linear regression was selected to simulate multi-site daily precipitation amounts (Charles 
et al., 1999). Previously the NHMM has been found suitable when applied to southwest Western 
Australia for historical (Hughes et al., 1999; Charles et al., 1999, 2004) and climate change studies 
(Bates et al., 1998). 
 The NHMM models multi-site patterns of daily precipitation occurrence as a finite number of 
“hidden” (i.e. unobserved) weather states. The temporal evolution of these daily states is modelled 
as a first-order Markov process with state-to-state transition probabilities conditioned on a small 
number of synoptic-scale atmospheric predictors, such as sea-level pressure, geopotential heights, 
and measures of atmospheric moisture. Detailed information on the NHMM, including its 
mathematical parameterisations, estimation algorithms and assumptions can be found in Hughes et 
al. (1999) and Charles et al. (1999). 
 The NHMM was calibrated on an approximately half year basis, with summer defined as 
November–March and winter as April–October. The summer model has six weather states with 
three predictors: MSLP (mean sea level pressure), DTD700 (dew point temperature depression at 
700 hPa, i.e. the difference between air and dew point temperature), and east–west GPH500 
(geopotential height at 500 hPa) gradient. The winter model has five weather states and four 
predictors: north–south MSLP gradient, DTD700, DTD850, and north–south GPH700 gradient. 
Prior to their use in NHMM calibration, the atmospheric predictors extracted from NNR were 
converted to anomalies, i.e. “centred”, by subtracting their calibration period means (Hughes et 
al., 1999). 
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RESULTS AND DISCUSSION 
Changes in weather state frequencies 
The changes in NHMM downscaled weather state sequences are driven by the changes in 
atmospheric predictors projected by the GCM scenarios. The projected multi-site daily rainfall 
series are conditional on these weather state sequence changes, and thus the predictor changes. 
Table 1 summarises the five winter weather states, their calibration period frequencies and 
associated spatial rainfall patterns.  
 
Table 1 Summary of winter weather state patterns. 
State  Freq. Description 
1 0.48 Rainfall: dry everywhere 

Synoptics: high pressure centred over region; dry continental air 
2 0.12 Rainfall: wet everywhere 

Synoptics: low pressure trough; moist southerly maritime airflow 
3 0.10 Rainfall: moderately wet everywhere 

Synoptics: weak low pressure trough; moist system over region 
4 0.18 Rainfall: wet in the south predominantly  

Synoptics: weak low pressure trough; moist southerly maritime airflow 
5 0.12 Rainfall: wet everywhere, moderate in northwest 

Synoptics: low pressure trough further east than in State 2; moist southerly maritime 
airflow 

 
 Table 2 summarises the projected winter weather state frequency changes from downscaling 
the Mk3.5 projections (as an example, summer season and other GCM results are omitted due to 
space). The first number in each cell is the mean probability of occurrence (i.e. frequency) of the 
weather state for the given downscaled scenario. The second number, in brackets, is the number of 
“standard errors” between this probability and the baseline 20th century downscaled weather state 
probability (1961–2000). It is thus a measure of the relative significance of the projected change in 
weather state frequency. 
 
Table 2 Winter Mk3.5 downscaled weather state mean frequencies (and standard errors, in brackets, relative 
to current climate). 
State Current A1B mid* A1B end A2 mid A2 end B1 mid  B1 end 
1 0.44 0.512 (3.4) 0.55 (5.3) 0.50 (2.6) 0.56 (6.1) 0.49 (2.4) 0.51 (3.9) 
2 0.12 0.09 (2.8) 0.07 (5.0) 0.09 (2.1) 0.06 (5.7) 0.09 (2.6) 0.09 (2.9) 
3 0.10 0.08 (2.5) 0.07 (4.2) 0.08 (2.1) 0.07 (4.5) 0.09 (1.5) 0.08 (2.6) 
4 0.21 0.20 (0.6) 0.20 (0.4) 0.21 (1.1) 0.20(0.8) 0.21 (0.2) 0.21 (0.2) 
5 0.14 0.12 (2.6) 0.11 (3.5) 0.11(3.1) 0.11 (4.1) 0.13 (1.5) 0.11(3.6) 

* “mid” refers to the 2046–2065 period; “end” refers to the 2081–2100 period. 

 
 There is strong consistency in the direction of the state changes across virtually all the 
scenarios and periods. The dry State 1 increases in frequency for all scenarios and periods for both 
summer (not shown) and winter and the wet State 2, likewise, decreases. There is also a consistent 
response in the magnitude of the state changes to the different emissions scenarios by the end of 
the century, corresponding to the relative strength of each scenario. 
 
Changes in annual and seasonal mean rainfall  
The downscaled projections for annual rainfall, averaged across the 30 stations, indicate a decrease 
for both 2046–2065 and 2081–2100 periods for all scenarios and climate models (Fig. 1), except 
for a slightly increase for CCAM for the A2 scenario in 2081–2100. Note, CCAM results were not 
available for the B1 scenario. Two climate models (GFDL and Mk3.5) consistently project a 
decline of summer (Nov–Mar) rainfall, and two (CCAM and MRI) indicate an increase of summer 
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rainfall (Fig. 2). This is interesting considering that the CCAM model is nudged by the Mk3.0 
atmosphere and uses the Mk3.0 SSTs as the ocean boundary condition. In contrast, all four 
downscaled climate models show a decrease of winter (Apr–Oct) rainfall (Fig. 2). Since winter 
rainfall accounts for two-thirds of the annual rainfall and produces the majority of streamflow for 
this region, this decrease would cause additional water availability concerns in the southern 
Murray-Darling Basin, given that water shortage is already a critical problem in the region. 
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Fig. 1 Annual rainfall change (%). 

 

 
Fig. 2 Summer and winter seasonal rainfall change (%). 

 
Changes in extreme rainfall 

The annual daily maximum rainfall is projected to intensify in the future, particularly by the end of 
the century (Fig. 3). This implies the potential for an increase in the probability and magnitude of 
intense floods in the study region (Fu et al., 2010). The daily 99th percentile rainfall does not have 
as significant a change as the daily maximum rainfall. The changes are smaller than those of daily 
maximum rainfall, with more climate models and scenarios indicating a decrease (not shown). The 
daily 95th and 90th percentile rainfall values, in contrast, are projected to decrease in the future, 
especially for the 2081–2100 period (Fig. 3). The decrease in mean and increase in daily maximum 
rainfall is consistent with the recent literature (IPCC, 2007, and references therein). 
 
Changes in dry/wet day frequencies 

The number of dry days is projected to increase (Fig. 4) and accordingly wet days decrease (Fig. 4) 
consistently across all climate models and emission scenarios. This is consistent with analysis of 
GCM projections by Pitman & Perkins (2008). Together with the projected decrease in the annual 
rainfall this would decrease runoff and streamflow, and therefore suggests increasing water 
availability problems for the region. 
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Fig. 3 Changes in annual daily maximum rainfall and daily 90th percentile rainfall (%). 

 

 
Fig. 4 Changes in dry (<1.0 mm) and wet (>=1.0 mm) days (%). 

 

 
Fig. 5 Changes of maximum consecutive dry/wet days (%). 

 
Changes in maximum consecutive dry/wet days 
The maximum length of consecutive dry days is also projected to increase (Fig. 5). This change 
would dry out catchments, leading to reduced runoff and streamflow, with water availability 
implications. Correspondingly, there is a consistent projection for the maximum length of 
consecutive wet days to decrease (Fig. 5). These changes in daily sequencing, combined with 
fewer events and reduced amounts, would lead to drier catchment soil profiles and therefore 
further reduce runoff potential. 
 
 
CONCLUSIONS 
Stochastically downscaled multi-site daily rainfall projections were assessed for changes to 
hydrologically relevant metrics: annual, summer (Nov–Mar) and winter (Apr–Oct) rainfall, daily 
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maximum rainfall, daily 90th, 95th and 99th percentile rainfall, the number of dry and wet days, 
and the number of consecutive dry and wet days. Overall the results across the four climate models 
and three emissions scenarios for two periods in the future show consistent changes. 
 The results project rainfall changes that would lead to more occurrences of low streamflow 
because of the combined effect of changes in frequency, magnitude and sequencing of rainfall 
events. There is consistency among the four GCMs and three emission scenarios in a projected 
decrease in annual/winter rainfall, increase in dry days and maximum consecutive dry days and 
decrease in wet days and maximum consecutive wet days. This would have implications for 
reduced water availability in the region (e.g. Chiew et al., 2010). However, the increase of annual 
daily maximum rainfall could imply a potential increased risk of flooding. Important caveats are 
that: (1) these results are based on using a small number of GCMs and emission scenarios and so 
do not account for the full range of potential climate change, and (2) only one downscaling method 
is used; however, Frost et al. (2011) found consistency among six downscaling methods, including 
the NHMM, for this station network.  
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