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Abstract We investigated the fit of generalized extreme value (GEV) distributions to maximum 
precipitation over the Mesochora mountainous catchment in central-western Greece under present and future 
climate scenarios. Precipitation was modelled as a stochastic process coupled with atmospheric circulation 
models. Automated objective classification based on optimized fuzzy rules was used to classify observed 
circulation patterns (CPs) and ECHAM4 General Circulation Model-generated CPs for 1×CO2 and 2×CO2 
climate scenarios. The GEV distribution was fitted by maximum likelihood, allowing for non-stationarity 
over time in its location and scale parameters. The stationary model was adequate for historical data on 
annual daily maxima for 1972–1992 and also for 1×CO2 for the period 1961–2000. However, the 2×CO2 
series for 2061–2100 required a cubic time trend in location to obtain a satisfactory fit (P<0.0001 by 
likelihood ratio test). This series declined to a minimum around 2080, followed by an increase to a 
maximum around 2092, and subsequently a further decline.  
Key words generalized extreme value distribution; maximum likelihood; global warming;  
annual maximum precipitation; likelihood ratio tests; non-stationarity; Greece  
 
 
INTRODUCTION 

The analysis of extremes in hydro-meteorological data, such as the annual or monthly maxima in 
precipitation and discharge series, is fundamental for the design of engineering structures 
(Maidment, 1993). These maxima can be modelled asymptotically using the generalized extreme 
value (GEV) distribution (Jenkinson, 1955). The assumption of independent and identically 
distributed data in the series with constant properties through time (stationarity) may need to be 
modified to reflect climate change. There is mounting evidence that hydro-climatic extreme series 
are not stationary, owing to natural climate variability or anthropogenic climate change (Jain & 
Lall, 2001; Milly et al., 2008). The modelling of non-stationarity within the framework of the 
GEV distribution requires extended models with covariate-dependent changes in at least one of the 
distribution’s three parameters (location, scale and shape) (Coles, 2001).  
 In recent studies along these lines, parameter estimates were obtained by the maximum 
likelihood method (ML) (Wang et al., 2004) or generalized maximum likelihood (GML) (El 
Adlouni et al., 2007; Cannon, 2010). In the studies of Wang et al. (2004) and El Adlouni et al. 
(2007), dependence of the GEV parameters on covariates was modelled by linear or log-linear 
parametric models. In the study of Cannon (2010), the parameters were specified via a function of 
covariates conditioned on a probabilistic extension of the multilayer perceptron neural network 
that allows unspecified interactions between multiple covariates. Both El Adlouni et al. (2007) and 
Cannon (2010) analysed annual maximum precipitation data recorded at Randsburg, California, 
and the Southern Oscillation Index (SOI) was taken to be the covariate process. 
 In this paper we take a somewhat different approach, simulating climate change via 
precipitation modelling as a stochastic process coupled with atmospheric circulation. An 
automated and objective classification of daily circulation patterns (CPs) based on optimized fuzzy 
rules was used to classify both observed CPs and ECHAM4 General Circulation Model (GCM)-
generated CPs for 1×CO2 and 2×CO2 climate scenarios (Panagoulia et al., 2006a,b, 2008). From 
the resulting daily precipitation we calculated the annual daily maximum series over the 
Mesochora mountainous catchment in central-western Greece. The objective of this study is to 
investigate the fit of generalized extreme value (GEV) distributions to the series of historical data 
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for 1972–1992, 1×CO2 data for 1961–2000 and 2×CO2 data for 2061–2100. To this end, we fitted 
the GEV distribution by maximum likelihood, allowing for non-stationarity over time in its 
parameters of location μ(t) and scale σ(t), and compared different models by likelihood ratio tests.  
 
 
PRECIPITATION DATA SERIES 

The mountainous Mesochora catchment (Fig. 1) is the most upstream sub-catchment of the 
Acheloos River catchment, which lies in the western-central mountain region of Greece and has an 
area of about 633 km2. A reservoir (useful capacity of 228 hm3) has been constructed at the outlet 
of the catchment and a hydropower plant with installed capacity of 160 MW. Mean annual 
discharge is 23.2 m3 s-1. Precipitation stations are installed within and around the catchment, 
mostly in the lower half over a range of elevations from 780 to 1160 m. Daily measurements of 
precipitation were available at 12 stations over the period 1972–1992.  
 

 
Fig. 1 Map of Mesochora catchment showing the available raingauges. 

 
 
 The precipitation variability at the stations was determined by conditioning on atmospheric 
circulation patterns (CPs). These were classified via the fuzzy-rules based approach combined with 
the simulated annealing algorithm (Bárdossy et al., 2002; Panagoulia et al., 2006a). Pressure data 
were obtained from the NMC grid-point data set for different windows over Europe with a grid 
resolution of 5° × 5°. It was found that the 700 hPa data in the window provided the best results, 
with an optimal number of 12 CPs based on the automated objective optimization procedure 
(Panagoulia et al., 2006a).  
 Space–time intermittence, the occurrence probability of dry days, the rainfall amounts on 
wet days, and the clustering of wet and dry day occurrence that has significant impact on the 
persistence of CPs were taken into account in the stochastic modelling of daily precipitation, 
adopting the methodology of Stehlik & Bárdossy (2002). The observed daily precipitation 
series for all available periods were used to estimate precipitation coupling parameters to 
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describe the stochastic links between CPs and point measurements. Precipitation time series 
were simulated using these estimated parameters (Panagoulia et al., 2006b). A spatial 
correlation function using time series cross-correlations was assessed for extrapolation of 
point precipitation data to the entire area. For this purpose, external drift kriging was used 
(Ahmed & de Marsily, 1987). 
 Beyond the CP-dependent observed daily precipitation over the Mesochora catchment for the 
period 1972–1992, downscaling was carried out for ECHAM4 GCM-generated precipitation. The 
analysis was based on daily values in the relevant sector 20°–65°N, 20°W–50°E over the 700 hPa 
pressure field for 1×CO2 and 2×CO2 climate scenarios in the corresponding periods 1961–2000 
and 2061–2100. The geo-potential pressure heights (the 700 hPa pressure) for both scenarios were 
classified by applying the same method as described above for the observed data. With the 
estimated parameters of the stochastic precipitation model for the observed data and the classified 
GCM-CPs, precipitation time series were generated representing two climate scenarios. The series 
of historical data and the two climate scenarios are shown in Figs 2–4, with trends indicated by 
lines obtained using the lowess smoother in the Minitab package (www.minitab.com). 
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Fig. 2 Historical precipitation data for 1972–1992 with trend fitted by lowess smoother. 
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Fig. 3 1×CO2 series for 1961–2000 with trend fitted by lowess smoother. 
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Fig. 4 2×CO2 series for 2061–2100 with trend fitted by the lowess smoother. 

 
 
FITTING THE NON-STATIONARY GEV 

The distribution function of the GEV distribution is: 
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where, μ, σ and ξ are the location, scale and shape parameters, respectively. The range of the 

distribution is given by 
σ

μξ )(1 −
+

x > 0 if ξ ≠ 0; otherwise x is unrestricted. Non-stationarity in a 

time series can be modelled by allowing some or all of these parameters to be functions of time (or 
other covariates). In fact, we followed the usual practice of permitting μ and σ to vary but keeping 
ξ constant (Nogaj et al., 2007). We fitted the GEV distribution by maximum likelihood and used 
likelihood ratio tests to examine the significance of linear, quadratic and cubic terms in time in μ(t) 
and σ(t). Fitting was carried out in the R programming language, using the gev routine from the 
ismev package (available from cran.r-project.org/web/packages/ismev, accessed 6/01/11). The ML 
method is sometimes criticized because it can give rise to physically unacceptable estimates; the 
GML method of Martins & Stedinger (2000) avoids this by, in effect, constraining ξ within the 
range (–0.5, 0.5) (Katz et al., 2002). However, as seen below, the unconstrained ML estimates of 
this parameter from our data fell well within this range anyway. 
 
 
RESULTS 
Historical data, 1972–1992 
The first data series consisted of the CPs-dependent observed annual daily maximum precipitation 
for the period between 1972 and 1992. Stationary and non-stationary GEV distributions were 
fitted. The change in minus twice the log likelihood as a result of allowing the location to be a 
linear function of time rather than constant, was 2.97, with P = 0.085 from the chi-squared 
distribution with one degree of freedom. Likewise, a linear term in scale did not improve fit  
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Fig. 5 Probability plots of fit of stationary GEV to historical series (upper left) and 1×CO2 series (upper 
right); plot of residuals from fit of GEV with cubic term in location parameter to 2×CO2 series (lower). 

 
 
Table 1 Parameter estimates for the GEV distribution fitted to the three series of data. Estimated standard 
errors are shown in parentheses. 
Parameter Term* Historical 

1972–1992 
1×CO2 
1961–2000 

2×CO2 
2061–2100 

Location μ Constant 67.06 (5.27) 61.45 (2.89) 62.81 (2.86) 
 Linear   11.06 (8.63) 
 Quadratic   4.80 (2.17) 
 Cubic   –12.44 (7.99) 
Scale σ Constant 20.87 (4.02) 15.52 (2.27) 15.45 (2.13) 
Shape ξ Constant –0.31 (0.21) 0.14 (0.16) 0.03 (0.15) 
*Following the recommendation in the documentation of the ismev package, each term was centred and 
scaled to unit variance before fitting. 
 

significantly (P = 0.15), nor did higher order terms in either parameter. The probability plot of the 
fit was satisfactory (Fig. 5) and it was concluded that the stationary GEV distribution provided an 
adequate description of the historical data. Parameter estimates for all analyses are shown in Table 1. 
 
1×CO2 series, 1961–2000 
A similar analysis was applied to the ECHAM4 GCM-generated scenarios of daily CPs for the 
1×CO2 climate scenario for the period 1961–2000. There was no indication that linear terms (P = 
0.43 for location, P = 0.67 for scale) or higher order terms were required. The probability plot 
again showed that the stationary GEV distribution provided a good fit to the series (Fig. 5). 
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2×CO2 series, 2061–2100 
A third analysis was carried out along the same lines of the ECHAM4 GCM-generated scenario of 
daily CPs for the 2×CO2 climate scenario for the period 2061–2100. In contrast to the historical 
data and the 1×CO2 series, the stationary model did not provide an adequate fit to the 2×CO2 
series. It was found that the cubic term in time in the location parameter was statistically 
significant (X2

3 = 15.9, P < 0.0001), although once again the scale parameter appeared to be 
stationary (P = 0.92). The probability plot of the residuals was well behaved (Fig. 5). 
 
 
CONCLUSIONS 

In this study we investigated non-stationarity (time dependence) in the location and scale 
parameters of the GEV distribution fitted to annual daily maxima of precipitation over a moun-
tainous catchment in Greece under present and future climate scenarios. The results in Table 1 
show that the shape parameters did not differ significantly from zero. Thus the Gumbel 
distribution (GEV with ξ = 0) appears to provide an adequate fit to all three series. Non-
stationarity was detected only for the 2×CO2 series for the period 2061–2100. A cubic term in time 
in the location parameter was necessary to describe this series’ decline to a minimum around 2080, 
followed by an increase to a maximum around 2092, and subsequently a further decline. 
Recognizing the small length of data series and the uncertainties of the precipitation modelling, the 
non-stationary GEV model presented in this paper is an important tool for use to take into 
consideration the temporal evolution of the climate. Such a tool is of great significance for the 
design of hydraulic structures under climate change. 
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