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Abstract Prediction of medium-term (1–10 years) streamflow has become more challenging under climate 
change conditions. This paper presents results from a modelling study carried out to evaluate the 
performance of conceptual rainfall–runoff models in predicting medium-term streamflow using parameter 
values from model calibration against different periods of observed historical data. Four rainfall–runoff 
models are calibrated using the past 1 year, 2 years, 5 years, 10 years, 20 years and the entire historical daily 
climate and streamflow data for 20 catchments in southeastern Australia. The calibrated models are then 
used to predict the next 1 year, 2 years, 5 years and 10 years of streamflow. Calibrating hydrological models 
against the more recent data may give better medium-term streamflow predictions because the more recent 
data are likely to be of better quality, and they represent the current hydroclimate state and current land use 
and development. The results indicate that at least 10 years of data are needed for the model calibration to 
properly capture the range of hydroclimate variability. However, the modelling experiments here show little 
difference in the streamflow prediction results using parameter values from model calibrations against the 
past 10 or 20 years of data or the entire historical record.  
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BACKGROUND 

Medium-term streamflow forecasts or predictions (1–10 years ahead) are important for water 
resources management and planning. The reliability of the streamflow predictions is dependent on 
the ability to predict the climate drivers of streamflow (mainly precipitation), as well as the ability 
to model the streamflow response to the climate drivers. Seasonal climate forecasts, and to a lesser 
extent streamflow forecasts, are now routinely provided in many countries (e.g. 
www.bom.gov.au/weather; http://weather.noaa.gov). Although climate prediction skills beyond 
one or two years are still relatively poor, there is considerable effort globally to develop medium-
term and decadal climate prediction systems (www.metoffice.gov.uk/climatechange/science/ 
hadleycentre; http://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch8.html). 

The hydrological models used to predict streamflow are usually developed for specific 
locations and modelling objectives. Most studies calibrate these models using historical climate 
and streamflow data. This approach is generally robust as the models are used to predict only the 
near-term future. However, with decadal hydroclimate variability and climate change, it is worth 
asking whether the streamflow predictions should be modelled using hydrological models 
calibrated against long historical records or against only the more recent data. The use of long 
historical records allows different hydroclimate regimes to be represented in the model calibration. 
The use of only the more recent data may better represent the current hydroclimate state or regime. 
This can be important for regions like southeastern Australia, which has recently experienced a 
severe and prolonged drought lasting more than a decade. In addition, the more recent data is 
likely to be of better quality. The recent data also represents current land use and development 
conditions. 

This paper addresses this question by carrying out a modelling experiment using climate and 
streamflow data from southeastern Australia. The modelling experiment evaluates the performance 
of four conceptual rainfall–runoff models in predicting medium-term streamflow (next 1, 2, 5 and 
10 years) when using parameter values from model calibration against the past 1, 2, 5, 10, 20 years 
and all years of observed historical data. 
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DATA 

Daily streamflow data from 20 upland catchments in southeastern Australia, ranging in size from 
300 km2 to 1000 km2, are used (Fig. 1). The catchments are largely unregulated and have less than 
10% missing data from 1960 onwards. The streamflow data were obtained from the respective 
state water agencies and have been quality assessed as part of another project (Vaze et al., 2011a). 
For this study, data since the start of record (which varies from 1930 to 1960) to 2008 are used to 
calibrate the rainfall–runoff models and assess the model forecasts/simulations. 

This study uses daily precipitation and climate data aggregated to the catchment scale from 
the SILO Data Drill (Jeffrey et al., 2001). The SILO Data Drill provides surfaces of daily rainfall 
and other climate data interpolated from point measurements made by the Australian Bureau of 
Meteorology. The daily potential evaporation is calculated from solar radiation, maximum and 
minimum temperatures and actual vapour pressure data using Morton’s wet environment or 
equilibrium evaporation formulation (Morton, 1983).   

 

 

Fig. 1 Study area and catchment boundaries. 

 
METHODOLOGY 

Rainfall–runoff models 

Four lumped conceptual daily rainfall–runoff models: Sacramento (Burnash et al., 1973), 
SIMHYD (Chiew et al., 2002), SMARG (Vaze et al., 2004) and IHACRES (Croke et al., 2006) 
are used in this study. For the application here, the number of parameters calibrated are 14 for 
Sacramento, six for SIMHYD, eight for SMARG, and seven for IHACRES. The input data to the 
models are daily rainfall and potential evaporation, and the models simulate daily streamflow. The 
models are typical of lumped conceptual rainfall–runoff models, with interconnected storages and 
algorithms that mimic the hydrological processes used to describe movement of water into and out 
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of the storages. The Sacramento and SIMHYD models are widely used by water agencies, research 
organisations and consultants for local and regional water resources assessments throughout south-
eastern Australia. 

The models are calibrated against observed historical daily streamflow data in the 20 
catchments. A one-year warm-up period is used in model calibrations. The optimised model 
parameter values are then used with the climate data to simulate the medium-term streamflow, and 
the simulated streamflow is compared with the observed streamflow to quantify the ability of the 
calibrated models in predicting the streamflow. In the model calibration, the model parameters are 
optimised to maximize the NSE-bias objective function, which is a weighted combination of the 
daily Nash-Sutcliffe efficiency (NSE) (Nash & Sutcliffe, 1970) and a logarithmic function of bias 
given by: 

OBJ = NSE – 5 | ln (1 + B) |2.5 
where NSE is the Nash-Sutcliffe efficiency of daily streamflow and B is the bias (total modelled 
error divided by observed total streamflow). The coefficients of this equation control the severity 
and shape of the bias constraint penalty. The coefficients above are chosen such that the models 
are calibrated predominantly to optimise NSE, while ensuring a relatively low bias in the total 
streamflow (Viney et al., 2009). The Shuffled Complex Evolution global optimisation method 
(Duan et al., 1993) followed by a local optimisation method (Rosenbrock, 1960), with multiple 
starting parameter sets, are used to calibrate the model parameters. 
 
Modelling experiments 
For each of the 20 catchments, the four rainfall–runoff models are calibrated using the past 1, 2, 5, 
10 and 20 years, and all years, of historical daily climate and streamflow data. The calibrated 
models are then used to predict the following 1, 2, 5 and 10 years of streamflow. Table 1 provides 
an example of the calibration and simulation strategy for one run. In run 1, the rainfall–runoff 
model is calibrated against: (i) all available streamflow data up to 1980, (ii) the past 20 years of 
streamflow data (1961–1980), (iii) the past 10 years data (1971–1980), (iv) the past 5 years data 
(1976–1980), (v) the past 2 years data (1979–1980), and (vi) the past 1 year data (1980). The 
calibrated parameter values from each of the six calibrations are then used to simulate streamflow 
for the next 1, 2, 5 and 10 years from 1981. The procedure is then repeated in run 2 with the 
calibration end year and simulation start year moved forward by one year (1981 and 1982 
respectively, Table 1). These runs are continued until the calibration end year of 1998 is reached. 

Each future simulation is therefore assessed by comparing 19 simulated and observed 
streamflow values. For simulation for the next 1 year, the simulation of 1981, 1982, … , up to 1999 
streamflow values are assessed. For simulation for the next 2 years, the simulation of 1981–1982 
total streamflow, 1982–1983 total streamflow, …, up to 1999–2000 total streamflow values are 
assessed. For simulation for the next 5 years, the simulation of 1981–1985 total streamflow, 1982–
1986 total streamflow, …, up to 1999–2004 total streamflow values are assessed. For simulation for 
the next 10 years, the simulation of 1981–1990 total streamflow, 1982–1991 total streamflow, …, up 
to 1999–2008 total streamflow values are assessed. We are therefore assessing the ability of the 
models to predict total streamflow over the period of interest (next 1, 2, 5 and 10 years, respectively). 

 
 

RESULTS AND DISCUSSION 
The modelling results are summarised in Fig. 2. Each panel shows results for each rainfall–runoff 
model for each future simulation period (the next 1 year, 2 years, 5 years and 10 years). Each box 
and whisker plot in the panels shows the range of NSE values assessing the streamflow predictions 
for the 20 catchments (5th, 25th, median, 75th and 95th percentile values) using parameter values 
from model calibrations against each of the past 1, 2, 5, 10, 20 years and all years of historical 
data. All the NSE values reported in Fig. 2 assess how well the 19 predicted total streamflow 
values compare with the 19 observed total streamflow values (see last paragraph of modelling 
experiments above). 
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Table 1 Example of model calibration and simulation strategy. Catchment 1– observed streamflow from 1930 to 2008). 
Run 1 
Calibration end 
year 1980 

Calibration 1 Calibration 2 Calibration 3 Calibration 4 Calibration 5 Calibration 6 

Calibration  
period 

(1930–1960)–1980
(all) 

1961–1980 
(20 years) 

1971–1980 
(10 years) 

1976–1980 
(5 years) 

1979–1980 
(2 years) 

1980 
(1 year) 

Simulation  
period 

Use Calibration 1 
parameter values to 
simulate stream 
flow for next 
one (1981), two 
(1981–1982), five 
(1981–1985) and 
10 years (1981–
1990) 

Use Calibration 2 
parameter values to 
simulate stream 
flow for next 
one (1981), two 
(1981–1982), five 
(1981–1985) and  
10 years (1981–
1990) 

Use Calibration 3 
parameter values 
to simulate stream
flow for next 
one (1981), two 
(1981–1982), five 
(1981–1985) and 
10 years (1981–
1990) 

Use Calibration 4 
parameter values to 
simulate stream 
 
low for next 
one (1981), two 
(1981–1982), five 
(1981–1985) and 10 
years (1981–1990) 

Use Calibration 5 
parameter values 
to simulate stream-
flow for next 
one (1981), two 
(1981–1982), five 
(1981–1985) and 
10 years (1981–
1990) 

Use Calibration 6 
parameter values 
to simulate stream-
flow for next 
one (1981), two 
(1981–1982), five 
(1981–1985) and 
10 years (1981–
1990) 

Run 2 
Calibration end 
year 1981 

Calibration 1 Calibration 2 Calibration 3 Calibration 4 Calibration 5 Calibration 6 

Calibration  
period 

1930–1981 
(all) 

1962–1981 
(20 years) 

1972–1981 
(10 years) 

1977–1981 
(5 years) 

1980–1981 
(2 years) 

1981 
(1 year) 

Simulation  
period 

Repeat the same experiment as in Run 1 above and simulate streamflow for 1, 2, 5 and 10 years ahead starting from 1982
using calibrated parameter values from calibrations 1, 2, 3, 4, 5 and 6 in Run 2. 

Continue these runs until calibration end at 1998. 

 
The shorter-term streamflow predictions (next 1 or 2 years) are generally considerably better 

than the longer term predictions (next 5 or 10 years). This can be expected because the model 
storage levels (from the model’s perspective) are likely to be best simulated at the start of the 
prediction period (the end of the calibration period). The modelling errors then accumulate over 
the simulation period, therefore resulting in poorer longer-term total streamflow predictions. 

The results indicate that at least 10 years of data are needed for the model calibration to 
properly capture the range of hydroclimate variability. This is particularly so for the IHACRES 
model, where the streamflow predictions are very poor when less than 10 years of data are used to 
calibrate the model. For the other three rainfall–runoff models, the model simulations using 
parameter values from model calibration against the past 5 years of data, and to a lesser extent the 
past 2 years of data for the shorter-term predictions, are often not much poorer than the streamflow 
predictions using parameter values from model calibration against the past 10 or more years of 
data. 

It is difficult to distinguish between the streamflow prediction results from model calibrations 
against the past 10 years, past 20 years and all years of data, except for IHACRES where the 
streamflow predictions improve when longer records are used to calibrate the model. Nevertheless, 
for the Sacramento model, which is used by water agencies for operational river system modelling 
and water resources planning across much of southeastern Australia (Vaze et al., 2011b), the best 
median streamflow prediction result (from the 20 catchments, see Fig. 2) come from using 
parameter values from model calibration against the past 10 years of data. For the SIMHYD 
model, which is used for the recent large-scale water resources assessment across southeastern 
Australia (www.csiro.au/partnerships/MDBSY.html; www.seaci.org), the best median streamflow 
prediction result for the next 5 years and next 10 years also come from using parameter values 
from model calibration against the past 10 years of data, and the best median streamflow 
prediction result for the next 1 year and next 2 years come from using parameter values from 
model calibration against the past 20 years of data. 

 
 

CONCLUSION 

A modelling study is carried out using data from 20 catchments in southeastern Australia to 
evaluate the performance of four lumped conceptual rainfall–runoff models in predicting medium-  
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Fig. 2 NSE values summarising streamflow prediction results across all 20 catchments. 

 
 
term streamflow using parameter values from model calibration against different periods of 
observed historical data. Calibrating hydrological models against the more recent data may give 
better medium-term streamflow predictions because the more recent data are likely to be of better 
quality and they represent the current hydroclimate state and current land use and development. 
The results indicate that at least 10 years of data are needed for the model calibration to properly 
capture the range of hydroclimate variability. However, the modelling experiments here show little 
difference in the streamflow prediction results using parameter values from model calibrations 
against the past 10 years of data, past 20 years of data, and the entire historical record. 
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