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Abstract Four state updating schemes are explored to integrate the observed discharge data into a flood 
forecasting model. Hourly streamflow discharge measured in the Ovens River catchment, Australia, is 
assimilated into the Probability Distributed Model (PDM) using the ensemble Kalman filter. The results 
show that the overall forecast accuracy improves when the discharge observations are integrated, mainly due 
to better initialisation of the model. Setting error covariance proportional to each state variable gives better 
results than setting error covariance as a constant value. Updating routing states of PDM affects discharge 
prediction instantly, while the effect of soil moisture updating results in a lagged response in discharge 
leading to a poorer update performance. However, during the forecast lead time, updating soil moisture 
results in slower degradation of the forecast accuracy, which is mainly because the soil moisture store is the 
only state influencing discharge volume, while the routing storages only describe the flow delay.  
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INTRODUCTION 

Flood has destructive impacts on people and their living environment. Flood forecasting, with 
sufficient lead time and accuracy, has great significance for effective flood warning and 
emergency response. However, forecasting models, the core of the quantitative flood forecasting 
systems, are still far from perfect, although they have improved considerably from conceptual to 
process-based ones to date. Moreover, useful information existing in the monitoring data collected 
during the antecedent periods and any response observed up to the start of the forecast period need 
to be utilized. Therefore, data assimilation, aiming to merge model forecasts and observation data 
to reduce forecasting uncertainty, receives growing attention as a way to further improve the 
accuracy of the forecasting system. 
 In general, hydrological data assimilation can be separated into three categories: error 
prediction, parameter estimation, and state updating (Anctil et al., 2003; Sene, 2008). Error 
prediction, regarded as a post-processing method, is to correct the errors between model outputs 
and observed values (Anctil et al., 2003), while parameter estimation can adjust parameters to 
achieve an improved forecast (Vrugt et al., 2006). According to recent work, state updating is 
known to be more effective for the real-time forecasting process (Clark et al., 2008; Komma et al., 
2008; Sene, 2008; Seo et al., 2009; Thirel et al., 2010), and there is some research showing the 
benefits of updating states and parameters simultaneously (Moradkhani et al., 2005; Vrugt et al., 
2006; Salamon & Feyen, 2009). 
 State updating involves assimilating available observations into forecasting models to 
improve the overall prediction. Gauged discharge data are effective and commonly preferred for 
assimilation, since the purpose of real-time updating in flood forecasting is to obtain better 
discharge forecasts. While soil moisture and evapotranspiration assimilations are also becoming 
increasingly important, particularly in other areas of hydrology, they are still not easy to 
effectively use in operational flood forecasting.  There are various kinds of state updating methods. 
The most widely used methods are sequential data assimilation and variational data assimilation. 
Variational data assimilation is essentially a smoothing method that requires a set of observations 
during a period of time, while sequential data assimilation, such as the Kalman filter (KF), is more 
suitable for real-time updating as it can adjust state variables whenever a new observation is 
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available. The extended Kalman filter (EKF) and the ensemble Kalman filter (EnKF) are two 
widely-used sequential methods, adapted from the standard Kalman filter for nonlinear dynamic 
systems. Both require estimates of model and observation error to determine the optimal 
combination of model and observations. The EKF estimates model error by propagating error 
covariance matrix using a linearized operator (Clark et al., 2008). This approach is inefficient for 
complex systems and unstable when applied to highly nonlinear models. On the other hand, the 
EnKF does not require linearization of the models to propagate ensemble states and to estimate 
model error covariance at updating time steps (Evensen, 1994). It has proven to be relatively 
efficient and suitable for complex nonlinear models. 
 There have been a number of streamflow forecasting studies based on the EnKF in the past 
decade (Moradkhani et al., 2005; Vrugt et al., 2005, 2006; Weerts & El Serafy, 2006; Andreadis et 
al., 2007; Clark et al., 2008; Komma et al., 2008; Pauwels & De Lannoy, 2009). These studies 
argue that, despite the more detailed specification of physical processes in process-based models, 
simple models can run more efficiently and the state updating can be implemented more easily 
with them.  
 In fact, current flood forecasting systems used in most countries are mainly conceptual models 
(Sene, 2008). Although the conceptual models are rather simple compared to the physically-based 
hydrological models, integrating state updating into the models is still challenging because of 
some technical issues. One of the most notable problems is to quantify error covariance and select 
appropriate state variables to update. In this paper we test four updating schemes to demonstrate 
the impacts of different error quantification and choice of states to update on real-time forecasting.  
 
 
DATA AND METHODS 

Data  

The study area is the Ovens River catchment upstream region of the Myrtleford observation station 
in northeast Victoria, Australia. The catchment area is 1210 km2 and the stream channel network is 
about 8000 km long. The catchment drains the northern slopes of the Great Dividing Range. Data 
used in this paper include hourly averaged precipitation from the raingauges, monthly averaged 
potential evapotranspiration, and hourly discharge at the catchment outlet. With these data, model 
parameter calibration is carried out from 1 January 1999 to 21 July 2004 using the Shuffled 
Complex Evaluation (SCE) algorithm (Duan et al., 1992). State updating is carried out for two 
continuous flood events from 22 July to 2 August 2004 using EnKF. Based on the updated state 
variables, the forecasting is implemented for the next two flood events from 3 to 25 August 2004. 
All the data used are continuous observations. 
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Fig. 1 The PDM model with two linear storages for surface runoff routing.  
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PDM model 

The Probability Distributed Model (PDM) is a conceptual rainfall–runoff model which calculates 
the soil moisture storage by a spatial probability distribution and routes the surface flow and the 
subsurface flow by linear and nonlinear routing methods, respectively (Moore, 2007). In this 
paper, we use a cascade of two linear storages as the surface routing model and a cubic nonlinear 
storage as the groundwater routing model. The model structure is shown in Fig. 1. More detailed 
description of the PDM model can be found in Moore (2007) and Srikanthan et al. (2008). 
 
EnKF 

When using the ensemble Kalman filter for sequential state updating, there are two main steps: 
model prediction and state updating. In the model prediction step, state variable ensembles are 
propagated within the state space and into the observation space through the following two 
equations: 
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 In the state updating step, predicted state ensembles are updated as the following equation: 
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 Equations (3) and (4) show the method of implementing the difference between discharge 
observation and prediction to update state variables in this paper. For more details about the 
application of EnKF in hydrological forecasting, refer to Moradkhani et al. (2005) and Srikanthan 
et al. (2008). 
 
 
RESULTS AND DISCUSSION 

As mentioned above, among the key information required for optimal state updating are the errors in 
model predictions. Model uncertainty comes from input data, initial states, model parameters and 
model structure. Errors from these parts will transfer into the state variables and then to the output 
data of subsequent time steps as the model runs forward. Therefore, in using the ensemble Kalman 
filters we can update state variables of the current time step by perturbing state variables and 
sometimes also input rainfall data. Updating all the state variables is possible but one thing we 
should notice is that the error of rainfall–runoff states, such as soil moisture, will transfer into, and 
may be the main source of catchment routing states. Thus, as mentioned in the PDM model (Moore, 
2007), many applications only focus on updating soil moisture or catchment routing states.  
 The forecasting model used in this paper has four state variables: the soil moisture storage S1; 
the surface routing storage S21 and S22; and the subsurface routing storage S3. In order to 
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demonstrate the impact of the different state variables and state error quantification on updating 
performance, we designed four updating schemes: (1) update S22 and S3 with a fixed magnitude 
of error; (2) update S22 and S3 with varying errors as a specified fraction of the state variables; (3) 
update S1 with a fixed magnitude of error; and (4) update S1 with varying errors as a specified 
fraction of the variable. The standard deviations are shown in Table 1.   
 
 
Table 1 Standard deviations of state variables for perturbation. 
Standard deviation Scheme 1 Scheme 2 Scheme 3 Scheme 4 
S1 (mm) – – 10 S1×10% 
S22 (mm) 0.8 S22×10% – – 
S3 (mm) 0.1 S3×10% – – 
S1, soil moisture; S22, the second surface routing storage, S3, subsurface routing storage. The values of the states used 
in Scheme 2 and Scheme 4 are the mean of ensemble states. 
 
 
Model performance during updating periods 

Figure 2 demonstrates the results of four continuous updating schemes. Within less than 20 hours, 
the predictions with updating of all the four schemes reach a high precision compared with the 
observations. Schemes 1 and 2 outperform schemes 3 and 4. However, this is not surprising as S22 
and S3 are the state variables that directly determine the surface discharge and baseflow discharge, 
while S1 only affects discharge through routing storages. This is also why the predictions of 
updating scheme 1 and scheme 2 improve faster than scheme 3 and scheme 4 and why updating 
soil moisture results in lags during peak periods. From the left panel of Fig. 2, we can see that 
scheme 2 performs well during the whole period, whilst scheme 1 is worse during peak periods. 
This is mainly because of the assumed constant error of S22 and S3 in scheme 1. During the peak 
periods, the perturbations of states are not sufficient for the prediction to be adjusted fully to the 
observations in scheme 1. The predications of scheme 3 and scheme 4 have little difference which 
is mostly because the soil moisture does not vary much during the whole updating periods. 
 
 

    
Fig. 2 The continuous updating performance. Obs, observed discharge; Sim, simulated discharge without 
updating; Scheme 1 to Scheme 4: the simulated discharge using the four updating schemes in turn. 

 
 
Forecast based on state updating 

As noted before, quantifying state errors as certain ratios of state variables is more rational and 
gives better results in the updating period. Consequently, using the updated state variables 
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obtained from updating scheme 2 (forecast 1) and scheme 4 (forecast 2), we ran forecasts for 24 
days that include the next two runoff events (Fig. 3). Observed rainfall was used to represent the 
forecast rainfall, which assumes the rainfall forecasting is as accurate as the observations of 
rainfall. 
 The results show that during the subsequent days, the improvement from updated initial states 
is significant but the benefits decrease as lead time increases. The benefits from routing storages 
updating decrease more rapidly compared with the soil moisture updating, even though updating 
routing storages affects the predicted discharge more directly and gives better analysis results than 
updating soil moisture (Fig. 2). This is probably partly because there is shorter memory in the 
routing storages, particularly the surface routing, which is important during events, compared with 
the soil moisture storage. It is also partly due to the soil moisture having a direct impact on the 
volume of water generated during forecast events, whilst routing storages are only used to describe 
the delay of water flow and the effects could be direct but short. Thus updating routing states 
without updating soil moisture will not provide much benefit at longer forecast lead times. The  
 
 

 
Fig. 3 Short time forecasts based on state updating. Obs, observed discharge; Sim, simulated discharge 
without updating; Forecast 1, forecast discharge based on updating scheme 2; Forecast 2, forecast 
discharge based on updating scheme 4. 

 
 

  
Fig. 4 Short time forecasts based on state updating using perturbed rainfall observations. Forecast 3 
(left panel): forecast discharge based on updating scheme 2 using perturbed rainfall; Forecast 4 (right 
panel): forecast discharge based on updating scheme 4 using perturbed rainfall. 
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model forecasting performance indicates that for flood forecasting purposes, updating soil water 
states is more important than updating routing states.  
 In order to simulate the real-time forecasting as realistically as possible, we used the perturbed 
rainfall to forecast discharge based on state updating schemes 2 and 4, resulting in forecast 3 and 
forecast 4, respectively. The standard deviations were set to be 30% of rainfall observations and a 
zero mean temporally independent normally distributed error was added to the observed hourly 
rainfall. As shown in Fig. 4, the degradation of the input data influences the forecasts to some 
extent. The degradation of the rainfall input had surprising little impact on the quality of the 
forecast in both cases. The results indicate that the choice of update scheme has more impact than 
the rainfall forecase error; however, this may not hold with more realistic forecast errors that could 
have a bias over a whole event. The slight improvement in forecast 4 compared with forecast 2 is 
probably a chance outcome associated with the particular realisation of rainfall errors. 
 
 
CONCLUSION 

With the continuous catchment observation data we calibrated the PDM model using SCE. Using 
EnKF, we tested four continuous state updating schemes. Based on the updated state variables, we 
ran the model for streamflow forecasting and analysed the impacts of different updating schemes 
and rainfall perturbation schemes on forecasting results. 
 The results show that continuous state updating can significantly improve the model 
performance. Updating routing states affect discharge prediction directly, while the effect of soil 
moisture updating has a time lag, which implies that updating the soil moisture may only not result 
in the prompt improvements of discharge as much as it is seen for the routing states updating. 
Setting error covariance as a ratio of each state variable for state perturbation gives better results 
than setting error covariance as a constant value. Despite the time lag, soil moisture updating gives 
better forecasts after the updating period than routing states updating. That is mainly because the 
soil moisture store is the only state influencing runoff volume, while the routing storages only 
describe the flow delay. When using the perturbed precipitation for forecasting, the error of 
rainfall will add more uncertainty to forecasted discharge but state updating still makes sense for 
the forecasting within the lead time of a few days. 
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