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Abstract Dust events are intricate climatic processes, which can have adverse effects on human health, 
safety, and the environment. In this study, two data mining approaches, namely, back-propagation artificial 
neural network (BP ANN) and supporting vector regression (SVR), were used to estimate atmospheric 
visibility through the synergistic use of Moderate Resolution Imaging Spectroradiometer (MODIS) Level 1B 
(L1B) data and ground-based observations at fourteen stations in the province of Khuzestan (southwestern 
Iran), during 2009–2010. Reflectance and brightness temperature in different bands (from MODIS) along 
with in situ meteorological data were input to the models to estimate atmospheric visibility. The results show 
that both models can accurately estimate atmospheric visibility. The visibility estimates from the BP ANN 
network had a root-mean-square error (RMSE) and Pearson’s correlation coefficient (R) of 0.67 and 0.69, 
respectively. The corresponding RMSE and R from the SVR model were 0.59 and 0.71, implying that the 
SVR approach outperforms the BP ANN. 
Key words atmospheric visibility; MODIS data; back-propagation artificial neural network; supporting vector 
regression 
 
1 INTRODUCTION 

Various adverse impacts on air quality, the environment, and human health have been attributed to 
dust events (Shao et al., 2011). Remote sensing can provide a valuable source of data for dust 
storm studies due to its temporally- and spatially-wide coverage (Zhao et al., 2010; Li et al., 2011). 
Dust events can significantly affect atmospheric visibility, therefore, the intensity of dust events can 
be characterized by determining atmospheric visibility via remote sensing (Shao et al., 2011).  
 Generally, nonlinear regression and semi-empirical approaches have been used to estimate 
dust storm parameters, including particulate matter (PM) and atmospheric visibility (Esmaili et al., 
2006). These methods are not robust and typically lead to erroneous results. In this study, two data 
mining approaches, namely, back-propagation artificial neural network (BP ANN) and supporting 
vector regression (SVR), were used to estimate atmospheric visibility at 14 stations in the province 
of Khuzestan (southwestern Iran) during 2009–2010, through the synergistic use of Moderate 
Resolution Imaging Spectroradiometer (MODIS) Level 1B (L1B) data and ground-based 
observations. 
 
2 DATA, METHODS and MODELS 
2.1 Data 
Data from MODIS were used to estimate atmospheric visibility. Since some meteorological 
variables (e.g. wind speed, direction, and relative humidity) significantly affect the characteristics 
of dust events (Wu et al., 2012), MODIS data and ground-based observations were used, 
synergistically, to increase the accuracy of the estimations. 
 
 2.1.1 MODIS The MODIS reflectance in bands 1, 2, 3, 4, 5, 7, 17, 18, 19 and 26, along with 
brightness temperature in bands 20, 22, 25, 29, 31 and 32, contain useful information about dust 
events (Hansell et al., 2007; Baddock et al., 2009; Karimi et al., 2011; Shahrisvand et al., 2013; 
Komeilian et al., 2014). MODIS L1B data used in this study were obtained from the Atmosphere 
Archive and Distribution System (LAADS, http://ladsweb.nascom.nasa.gov). 
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 2.1.2 Ground-based observations Meteorological variables, including air temperature (Ta), 
relative Humidity (Rh), wind speed (Ws) and wind direction (Wd) influence dust event 
characteristics (Wu et al., 2012). These four variables were used to characterize dust events more 
accurately. Synoptic-scale visibility data were used to train and test the models. 
 
2.2 Study site   
Khuzestan Province (32°46′13″N and 48°32′55″E) is located in southwestern Iran. It covers an 
area of 64 055 km² and has a population of 4 345 607 (2005). Khuzestan Province was chosen as 
the study region because: (a) it has recently encountered severe dust events; (b) among other 
provinces in Iran that frequently experience dust events, it is politically and economically the most 
important one; and (c) ground-based meteorological data were available.  
 The days that were selected for this study were the days during 2009–2010 when at least half 
of the meteorological stations in Khuzestan Province recorded a dust-induced reduction in 
visibility, to less than 1 km (the WMO definition of a dust storm) (Baddock et al., 2009). 
Additionally, only daytime events were used, allowing the influence of surface reflectance on the 
intensity of dust events to be explored. From this selection process, 27 days with dust events were 
identified in the study region, and were used in the models (DOY 3, 42, 43, 53, 54, 62, 75, 160, 
170, 180, 185, 187, 195, 211, 213 in 2009, and DOY 54, 55, 56, 82, 95, 139, 159, 175, 184, 203, 
213, 272 in 2010).  
 Due to the availability of a large number of studies on the theory of the SVR approach (e.g. 
Vapnik, 1979; Shawe-Taylor et al., 2004; Hastie et al., 2008; Noori et al., 2011), only a brief 
explanation of the SVR model is given below. Here the ε-SVR model (also known as Regression 
SVM type 1) was used to estimate atmospheric visibility, because it is commonly used in many 
regression problems. SVR estimates the real function as follows: 

y = f(x) + 𝛿𝛿                                                                                                           (1) 
where δ, x, and y are an independent random noise (defined by ε error tolerance), a multivariable 
input, and a scalar output. f is a deterministic function of the regression, and is defined by the 
following equation: 

f(x) = 𝑤𝑤𝑇𝑇.𝜑𝜑(𝑥𝑥) + 𝑏𝑏                                                                                         (2) 
where φ is a kernel function, w is a regression function coefficient, and (.)T denotes a transpose. 
The aim is to find a functional form of f(x) by training the ε-SVR model (Hastie et al., 2008). In 
the ε-SVR model, the ε-insensitive loss function was used, so that the problem can be written as 
follows: 

Minimize 1
2
‖W‖2 + C∑ ξ𝑖𝑖

𝑁𝑁
𝑖𝑖=1  + C∑ ξ𝑖𝑖

∗𝑁𝑁
𝑖𝑖=1                                                                              (3) 

    WT.φ(𝑥𝑥𝑖𝑖) +  𝑏𝑏 − 𝑦𝑦𝑖𝑖  ≤  ε +  ξ𝑖𝑖
∗                            

subject to     𝑦𝑦𝑖𝑖 − WT.φ(𝑥𝑥𝑖𝑖) −  𝑏𝑏 ≤  ε +  ξ𝑖𝑖                                                                        (4) 
                      ξ𝑖𝑖, ξ𝑖𝑖

∗
≥ 0 , i = 1, 2, … , N 

where parameter C > 0 determines the tradeoff between the model flatness and the degree to which 
deviations larger than ε can be tolerated (Shawe-Taylor et al., 2004). N, φ,  are the sample size and 
the kernel function. ξ𝑖𝑖 and  ξ𝑖𝑖

∗  are slack variables (stating the upper and lower training error, 
subject to an error tolerance, ε)  (Noori et al., 2011). To solve equation (3) (subject to the 
constraints in (4)), dual sets of Lagrange multipliers were used to solve for a and a*. That allowed 
the optimization problem to be solved by maximizing equation (5), subject to equation (6): 
Maximize ∑ 𝑦𝑦𝑖𝑖(𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖∗)𝑁𝑁

𝑖𝑖=1  - ∑ ε(𝑎𝑎𝑖𝑖 + 𝑎𝑎𝑖𝑖∗)𝑁𝑁
𝑖𝑖=1 −  0.5∑ (𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖∗)𝑁𝑁

𝑖𝑖,𝑗𝑗=1 �𝑎𝑎𝑗𝑗 − 𝑎𝑎𝑗𝑗∗�φ(𝑥𝑥𝑖𝑖)T.φ�𝑥𝑥𝑗𝑗�   (5) 

                          ∑ (𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖∗)𝑁𝑁
𝑖𝑖=1 = 0        

subject to     0 ≤ 𝑎𝑎𝑖𝑖 ≤ C                                                                                                        (6) 
    0 ≤ 𝑎𝑎𝑖𝑖∗ ≤ C,  i = 1, 2, …, N 
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 Following the Karush-Kuhn-Tucker complementarity conditions, w and b in the SVR function 
can be calculated (Noori et al., 2011). Ultimately, the SVR function can be written in the form 
shown below:  

W = ∑ (𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖∗)𝑁𝑁
𝑖𝑖=1 φ(𝑥𝑥𝑖𝑖)𝑇𝑇. φ(𝑥𝑥) +  𝑏𝑏                                (7) 

Finally, the ε-SVR can be expressed as follows: 
f(x) = ∑  𝑎𝑎𝚤𝚤�𝜑𝜑(𝑥𝑥𝑖𝑖)𝑇𝑇. φ(𝑥𝑥) +  𝑏𝑏𝑁𝑁

𝑖𝑖=1                                   (8) 
where 𝑎𝑎𝚤𝚤�  is a Lagrange multiplier term (𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖∗). Since calculation of the kernel function in the 
feature space (equation (8)) is difficult, the commonly used kernel functions such as Linear, 
Polynomial, Gaussian, Sigmoid and Radial Basis Function (RBF) are used (Hastie et al., 2008; 
Noori et al., 2011). Among the kernel functions, the RBF has the highest efficiency and has been 
reported to be the most effective kernel function. The RBF can be written as follows:  

𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) = exp (−γ�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗�
2)                                (9) 

whereγ˃ 0 controls the amplitude of the Gaussian function, and determines the generalization 
ability of the SVM model. According to the SVM theory, the SVR model is highly sensitive to the 
tuning parameters (i.e. C, ε and γ). Using the LIBSVM toolbox in MATLAB, a K-fold cross-
validation (K = 5) was used to optimize the free (tuning) parameters of the SVR. 
 
2.3 BP ANN model 

Many theoretical and experimental studies have shown that a single hidden layer is sufficient for 
ANNs to approximate any complex non-linear function (Fausett, 1993; Haykin, 1999). A BP ANN 
model has three layers of nodes: the input layer, hidden layer, and output layer. Twenty nodes in 
the input layer (reflectance in bands 1, 2, 3, 4, 5, 7, 17, 18, 19 and 26, brightness temperature in 
bands 20, 22, 25, 29, 31 and 32, along with relative humidity, air temperature, wind speed and 
direction) and one node in the output layer (atmospheric visibility) were used. 
 The feed forward ANN was used, with a single hidden layer. It is trained with the BP 
algorithm, and takes advantage of sigmoid and identical transfer functions, respectively, in its 
hidden and output layers; 21 different networks were explored with different numbers of nodes (5 
to 25) in the hidden layer (called “hidden nodes”), to find the optimum number of hidden nodes. 
 

 
Fig. 1 The RMSE and correlation coefficient (R) of atmospheric visibility estimates for different 
numbers of nodes in the hidden layer. 
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3 RESULTS  

Before training the BP ANN model, the data were normalized to vary between –1 and 1. The data 
were divided into training and testing datasets. Of the data points, 65% were used to train the 
model, and 35% were used to test the model. 
 Using the training dataset, the 𝜀𝜀-SVR model with the RBF kernel was optimized through  
K-fold cross-validation. The tuned parameters (C,γ,ε) are 10, 0.10, and 0.22, respectively. The 
BP ANN method was tested using different numbers of hidden nodes. Figure 1 shows the R and 
RMSE of the atmospheric visibility estimates with different numbers of hidden nodes. A higher R 
and a lower RMSE indicate more accurate results. Among the 21 examined networks, the network 
with 13 hidden nodes (with RMSE = 0.67, and R = 0.69 in the testing step, and RMSE = 0.19, and 
R = 0.89 in the training step) showed the best performance. Thus, a network of 13 hidden nodes 
was used for the BP ANN method. 
 
Table 1 Statistical indices of atmospheric visibility estimates from the BP ANN and 𝜀𝜀-SVR models for both 
training and testing steps. 
 Training Testing 

RMSE (km) R RMSE (km) R 
BP ANN 0.19 0.89 0.67 0.69 
𝜀𝜀-SVR 0.15 0.93 0.59 0.71 
 

 
Fig. 2 Scatter plots of atmospheric visibility estimates from BP ANN (top) and 𝜀𝜀-SVR (bottom) models 
versus in situ observations for training and testing stages. 
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 Table 1 shows the atmospheric visibility estimates from the BP ANN and 𝜀𝜀-SVR models. As 
indicated, the training results from the BP ANN and 𝜀𝜀-SVR models have lower RMSE values and 
higher R values than the testing results. Both the BP ANN and 𝜀𝜀 -SVR models produced 
satisfactory results, which indicate that the training process was effective and reliable. The RMSE 
value of the 𝜀𝜀-SVR model was lower than that of the BP ANN model, and R value of the 𝜀𝜀-SVR 
model was higher than that of the BP ANN model, which means the 𝜀𝜀-SVR model outperformed 
the BP ANN model. 
 Figure 2 shows scatter plots of the atmospheric visibility estimates from the BP ANN and 𝜀𝜀-
SVR models versus observations. As indicated, results from both models mainly fall around the 45 
degree line for both training and testing stages. However, the estimates from testing of both 
models are more dispersed. 
 
4 CONCLUSION 

In this study, two well-known data processing approaches namely, SVR and BP ANN were used to 
estimate atmospheric visibility, using the synergy of MODIS data and ground-based observations. 
Both approaches yielded satisfactory estimates of atmospheric visibility. The visibility estimates 
from the BP ANN approach were found to have an RMSE and R of 0.67 and 0.69, respectively. 
The corresponding RMSE and R from the SVR model were 0.59 and 0.71, implying that SVR 
outperformed the BP ANN. 
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