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Abstract Hydrological multivariate analysis has been widely studied using copula-based modelling, in which 
marginal distribution inference is one of the key issues. The main object of this study is to discuss the 
applicability of the principle of maximum entropy (POME) in marginal distribution inference, thus to develop 
a POME-copula framework to analyse the dependence of hydrological variables. Marginal distributions are 
derived with the POME approach before bivariate copulas constructed with corresponding parameters 
estimated by the dependence of the derived margins. The proposed POME-copula has been employed in 
hydrological dependence analyses, with the annual maximum streamflow and water level collected from the 
Yangtze River, and the monthly streamflow from the Yellow River. Results show that the POME-copula 
method performs well in capturing dependence patterns of various hydrological variables. 
Key words the principle of maximum entropy; copula; dependence analysis; Shannon entropy; marginal distribution  
 

1 INTRODUCTION 
Hydrological multivariate analysis has attracted increasing attention in the past few years, due to 
limitations of single-variable analysis in hydrological applications. For instance, design of hydraulic 
constructions requires assessments of risks associated with more than one hydrological factor, 
including peak discharge, water level, etc. Therefore, multivariate dependency between all quantities 
defining the risk should be taken into account. In the past decades, various multivariate distributions, 
including multivariate normal and relevant distributions derived from extensions of Student’s t and 
Fischer’s F distributions (Johnson and Wichern, 1988), non-normal multivariate distributions 
including bivariate exponential (Favre et al., 2002), bivariate gamma (Yue et al., 2001), and 
bivariate extreme value distributions (Adamson et al., 1999), have been applied to model different 
dependence patterns of the hydrological variables. Although witnessed increasing applications, 
drawbacks in modelling these multivariate distributions are obvious, which can be summarized as: 
(a) the same family is needed for each marginal distribution, (b) extensions to more than just the 
bivariate case are not clear, and (c) parameters of the marginal distributions are also used to model 
the dependence between the random variables (Favre et al., 2004). 

The advent of copula (Sklar, 1959), a multivariate distribution constructing technique, avoiding 
the drawbacks mentioned above, can simplify the inference procedures and allow for splitting 
analyses of marginal distributions and further studies on hydrological dependence structures. Merits 
of copula in hydrologic applications have been discussed in Favre et al. (2004), Genest and Favre 
(2007) and Salvadori and De Michele (2007). In recent years, copula-based techniques have been 
widely used in hydrological dependence analysis (Vandenberghe et al., 2010; Gyasi-Agyei et al., 
2012), frequency analysis (Genest et al., 2007; Salvadori and Michele, 2010; Chebana et al., 2012) 
and hydrological simulation (AghaKouchak et al., 2010), etc. In copula-based modelling, marginal 
distribution derivation is of great importance, while in most previous researches, margins were 
assumed to follow certain common distributions, and problems of subjectivity might arose, 
accordingly. The POME, a non-parametric mathematical framework avoiding subjective bias in 
statistical inference, has been introduced in copula-based modelling (Hao and Singh, 2012a; 2012b). 
Based on previous studies, a POME-copula framework has been developed in this research, with 
advantages that deducted margins can have different forms and make full use of given information. 
The developed approach was applied to model and analyse hydrological dependence, with data 
collected from the Yangtze River and the Yellow River, China. 
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2 METHODOLOGY  

2.1 The principle of maximum entropy (POME) 

The principle of maximum entropy (POME) (Jaynes, 1957), a more flexible non-parametric 
inference framework, has been applied to derive the marginal distribution before copula modelling. 

For a continuous random variable X with the probability density function (PDF) f(x) (x∈(a, b)), 
the Shannon entropy H can be defined as (Shannon, 2001):  

= −∫ ( )ln( ( ))
b

a
H f x f x dx                                                                                                         (1) 

The POME provides a constructive criterion for setting up probability distributions on the basis of 
partial knowledge and one can obtain the most probable PDF with the available constraints by 
maximizing equation (1). Using the moments as constraints specified as: 
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where E(gi) is the expectation of gi(x) (gi(x)=xi). The POME-based PDF can be obtained as (Kesavan 
and Kapur, 1992): 
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where λi are the Lagrange multipliers. In this study, marginal distributions were derived with 
equation (3), using constraints of the first three moments, which can be expected to preserve the 
mean, variance and skewness of hydrological variables. 
 
2.2 Copula theory 
A copula is a multivariate function describing dependence of variables transformed by their margins, 
which can simplify inference procedures of multivariate distributions and studies on hydrological 
dependence. 

For the continuous random vector (X, Y) with marginal distributions FX(x) and FY(y), the joint 
distribution function can be expressed with its marginal distributions and copula function C as 
(Nelsen, 2006): 

( , ) [ ( ), ( ); ) ( , ; )X YP X x Y y C F x F y C u vθ θ≤ ≤ = =                                                                     (4) 

where θ is the parameter of the copula that measures the dependence between margins; u and v are 
realizations of the random variables U = FX(x) and V = FY(y). The density function of C is: 

2 ( , ; )( , ; ) d C u vc u v
dudv

θθ =                                                                                                              (5) 

The two-dimensional copula C maps the two marginal distributions into the joint distribution as  
(0, 1)2 → (0, 1)2. The value of θ can be estimated by the Spearman’s correlation coefficient and the 
Kendall’s correlation coefficient (Schweizer and Wolff, 1981). 

The Archimedean copula is one of the most popular copula functions. Moreover, in the 
Archimedean copula the computation of measures of dependence is simplified. In this study, three 
ypes of Archimedean copula, the Clayton, Frank and Gumbel, were employed to model dependence 
patterns of different hydrological variables. 

 
2.3 POME-copula method 

The entropy-copula coupled idea has been proposed in hydrology (Hao and Singh, 2012a; 2012b), 
and based on relevant works, a more completed POME-copula framework is developed, which can 
be summarized as two steps: 
(a) Derive marginal distributions U = FX(x) and V = FY(y) using the POME.  
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Normalize the initial data X (Y) to (‒1, 1) with the algorithm x´ = 2 × (x ‒ Xmin)/(Xmax ‒ Xmin) + 
(‒1). After that, determine the Lagrange multipliers in equation (3) using the Newton-Raphson 
method (Hao and Singh, 2011) with constraints of the first three moments (equation (2): a =  
‒1, b = 1, m = 3) and obtain the distribution U = FX(x) (V = FY(y)). Use the Kolmogorov-Smirnov 
test to assess goodness-of-fit of derived distributions.  

(b) Determine the best copula according to the estimation of the dependence of U and V. 
Calculate the Spearman’s coefficient rho and Kendall’s coefficient tau of U and V, so that θ can 
be estimated by rho and tau. Later, evaluate goodness-of-fit of different types of copulas with 
statistics Sn(B) and Sn(C) (Genest et al., 2009), before determining the best copula to model the 
dependence of hydrological data. 

 
3 CASE STUDY  
The developed POME-copula framework was employed to model and analyse hydrological 
variables of two representative basins in China, the Yangtze River and the Yellow River. 
Considering streamflow and water level data as continuous random variables, dependences of the 
annual maxima of streamflow (denoted as S1) and water level (denoted as S2) of the Yangtze River 
at Yichang, for the period from 1950 to 2008; and the monthly streamflow of the Yellow River at 
Huayuankou (denoted as S3) and Gaocun (denoted as S4), for the period from 1998 to 2012, were 
analysed with the POME-copula.  
 
3.1 Marginal distributions with the POME 
The marginal PDFs FX(x) and FY(y) derived with the POME were compared with the empirical 
histograms (Fig. 1). Generally, the POME-based PDFs fitted the empirical histogram well, 
especially that the derived POME-based PDFs of streamflows of the Yellow River are relatively 
accurate, illustrating the strong positive skewness of distributions.  
 

 
Fig. 1 Comparison of the empirical histograms and the POME-based PDFs: (a) S1, (b) S2, (c) S3 and  
(d) S4. 

  
 The Kolmogorov-Smirnov test was employed to assess the goodness-of-fit of POME-based 
marginal distributions. Results of high p value (>>0.05), especially for the data of the Yangtze River, 
signified that the null hypothesis that the data follow POME-based distributions should not be 
rejected. That is the POME approach is accurate in marginal distribution inference. 
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3.2 Copula selection 
The Spearman’s coefficient rho and Kendall’s coefficient tau of U and V were calculated before 
parameters were estimated. The goodness-of-fit of estimated Clayton, Frank and Gumbel copulas 
were evaluated by statistics Sn(B)  and Sn(C). From Table 1, results of low p values (<0.05) signified 
that the null hypothesis that the copula function is accurate should be rejected. In the two cases, the 
Frank copula, with higher p values than other copulas, was selected as the best copula to analyse the 
dependence of hydrological variables.  
 
Table 1 Goodness-of-fit tests of different estimated copulas. 

Cases Copulas 
θ p value ( Sn(B)) p value ( Sn(C)) 
tau rho tau rho tau rho 

S1-S2 
Clayton 9.41 8.75 0.06 0.07 0.07 0.07 
Frank 21.04 17.90 0.69 0.73 0.41 0.48 
Gumbel 5.71 5.25 0.26 0.18 0.10 0.21 

S3-S4 
Clayton 11.93 12.28 0.00 0.00 0.00 0.00 
Frank 26.11 24.10 0.62 0.67 0.54 0.65 
Gumbel 6.97 6.95 0.27 0.26 0.39 0.33 

 
3.3 Dependence analysis using POME-Frank copula 

Densities of POME-Frank copulas were compared with empirical densities (Fig. 2), and it is 
illustrated that densities of POME-Frank copulas fit empirical ones well. Moreover, dependence 
patterns of S1-S2 and S3-S4 are similar, although their marginal distributions are quite different 
(Fig. 1). First, densities of copulas are distributed along the main diagonals, indicating positive 
correlations of both two cases. Second, densities increase when they reach the upper and lower tail. 
Last, dependence structures of the two cases are symmetric. 

 

 
 
Fig. 2 Comparison of the POME-Frank copulas and empirical density distributions: (a) POME-Frank 
copula (S1-S2); (b) POME-Frank copula (S3-S4); (c) empirical density distribution (S1-S2); and  
(d) empirical density distribution (S3-S4). 

 
One hundred pairs of series with length N = 500 were generated with the constructed POME-

Frank copulas. Scatterplots of the observed data and the generated data with POME-Frank copulas 
are shown in Fig. 3. Generally, distributed patterns of the generated data matched that of the 
observed data. For instance, S1 and S2 shows a strong positive dependence (Pearson coefficient r = 
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0.95; Kendall coefficient tau = 0.82; Spearman coefficient rho = 0.95) and most of the observed 
data are distributed along the main diagonal. In comparison, most of the generated data are 
distributed along the diagonal with approximate correlations (r = 0.94; tau = 0.81; rho = 0.94).  

 

 
Fig. 3 Scatterplots of the observed and generated data with the POME-Frank copulas. 
 
Boxplots were used to assess the performance of 100 generated pairs with the POME-copulas, 

comparing with the observed ones (Fig. 4). The performance can be judged good when the statistics 
calculated from the observed data fall within the ranges of boxplots drawn by simulated results. 
From Fig. 4, it can be shown that all correlation coefficients from the observed data are within the 
interval of the boxplots, and most correlation coefficients, except the Kendall coefficient in Fig. 5(a) 
and the Pearson coefficient in Fig. 5(b), are within the interquartile interval. Results from boxplots 
further verify accuracy of the POME-copulas in capturing observed dependence patterns, including 
linear correlation and rank correlation. 

 

 
Fig. 4 Correlation coefficients of the observed and all generated data: (a) S1-S2; and (b) S3-S4. 

 
 

4 CONCLUSION  
A complete POME-copula framework is developed for hydrological multivariate modelling. 
Dependences of hydrological data from two representative basins in China have been analysed with 
the constructed POME-copulas, indicating obvious similarity in symmetry and tail dependence. 
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With their advantages of full use of providing information and objectivity in marginal distribution 
inference, the POME-copulas have been verified as accurate in capturing dependence patterns of 
various hydrological variables.  

The developed POME-copula framework can also be applied in similar dependence analyses. 
For more complicated cases, further studies on constraints of more moments are needed, thus to 
reduce more potential uncertainty in marginal distribution inference. 
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