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Abstract Calibration of hydrological models in ungauged basins is now a hot research topic in the field of 
hydrology. In addition to the traditional method of parameter regionalization, using discontinuous flow 
observations to calibrate hydrological models has gradually become popular in recent years. In this study, 
the possibility of using a limited number of river discharge data to calibrate a distributed hydrological 
model, the Soil and Water Assessment Tool (SWAT), was explored. The influence of the quantity of 
discharge measurements on model calibration in the upper Heihe Basin was analysed. Calibration using only 
one year of daily discharge measurements was compared with calibration using three years of discharge 
data. The results showed that the parameter values derived from calibration using one year’s data could 
achieve similar model performance with calibration using three years’ data, indicating that there is a 
possibility of using limited numbers of discharge data to calibrate the SWAT model effectively in poorly 
gauged basins. 
Key words Heihe basin; length of river discharge data; SWAT; model calibration 
 
1 INTRODUCTION 

There is a consensus that hydrological modelling is essential for improve the understanding of the 
hydrological cycle at basin scale (Li et al. 1992). Model calibration is a key process for deriving 
reasonable model parameter values that reflect the characteristics of the water cycle. Only after 
parameter calibration, from which the best parameter values are determined, is the model regarded 
as a reliable tool to make predictions. Usually continuous discharge measurements of several years 
are used for model calibration. However, there are many basins lacking continuous observations 
for the calibration of hydrological models. How to calibrate models effectively in such poorly 
gauged or ungauged basins becomes a challenge. 
 At present, the methods of estimating hydrological model parameters in ungauged basins 
mainly include regionalization, calibration using remote sensing information and calibration using 
limited numbers of river discharge data. The regionalization method is commonly used (Blöschl & 
Sivapalan, 1995; Chai et al., 2005; Young, 2006; Li et al., 2011), which infers parameter values in 
ungauged basins from gauged ones. Generally, the uncertainty of regionalization methods is 
considerable. Calibration using satellite observations of river hydraulic information (Sun et al., 
2010, 2012), which works as a surrogate of river discharge data in the model calibration, is only 
applicable to middle to large basins, due to the limitation in the resolution of the remote sensing 
data. Considering the fact that in the real world, limited numbers of river discharge data may be 
available in many basins, some researchers have tried to use such low numbers of data for model 
calibration: Perrin et al. (2007) calibrated two rainfall–runoff models using different numbers of 
observations in 12 American basins. The results demonstrate that in some cases, the model could 
be calibrated effectively with ten observations. Seibert and Beven (2009) also used a limited 
number of river discharge data during one year in a Swedish basin to calibrate the HBV model. 
The research indicated that a few river discharge data could contain the same amount of 
information for hydrological model parameter identification as long data records. 
 Distributed hydrologic models based on physical mechanisms can describe the heterogeneity 
in the climate conditions, land cover and soil type within a basin, which make them attractive for 
predicting the influence of climate change on the water cycle and analysing the impact of land 
cover change (Wang et al., 2004; Xu and Cheng, 2010). In previous studies, evaluations of the 
influence of the amount of discharge measurements used on model calibration were largely 
focused on conceptual hydrologic models. However, due to the high time demand in the 
calibration, such evaluation is hard to be carried out for distributed hydrological model. 
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 In this study, the influence of the amount discharge measurements used on the calibration of a 
distributed hydrological model, the Soil and Water Assessment Tool (SWAT) is evaluated, for the 
purpose of exploring the minimum number of river discharge observations that can derive 
reasonable model parameter values. The upper Heihe Basin in China is selected as the case study. 
For SWAT, usually daily discharge observations over several years are used for model calibration. 
In this study, whether using only one year data can calibrate the SWAT model effectively is 
examined. 
 
2 STUDY AREA 

Heihe basin is located in the northwest of Gansu province, the river originates from the Qilian 
Mountains and flows successively through Qinghai, Gansu and Inner Mongolia. The elevation of 
the basin decreases from the southern high mountains area to the north high-plain area. Based on 
differences in geomorphology, the basin can be divided into three regions: the upper-reach region 
belonging to the Qilian Mountain area, the middle-reach region belonging to the Hexi Corridor 
Plain area and the lower-reach region belonging to the Alxa Plateau area. The upper-reach region 
is the upstream area of the Yingluo Gorge located on the main stream, covering an area of about 
10 000 km2. It is in the Qinghai-Tibet Plateau climatic region. The annual average temperature of 
the whole watershed is lower than 2°C and annual precipitation ranges from 300 to 700 mm. 
 

 
Fig. 1 Topography, weather stations and hydrological station of the upper Heihe basin. 

 
3 HYDROLOGICAL MODEL AND CALIBRATION METHOD 

3.1 SWAT model and sensitivity analysis  

The Soil and Water Assessment Tool (SWAT) is a physically-based distributed hydrological 
model which is suitable for hydrological simulations of middle to large size basins with different 
soil types, land use and management practices.  
 In this study, model parameter sensitivity is evaluated by a multiple regression system 
calculation. The relation between parameter values generated by Latin hypercube sampling and the 
corresponding value of the objective function were analysed by the following equation: 

 g = α + ∑ 𝛽𝛽𝑖𝑖𝑏𝑏𝑖𝑖𝑚𝑚
𝑖𝑖=1                                                                                                                      (1) 

where g is the objective function value, α and βi are the regression equation coefficients, bi is the 
parameter value, and m is the number of parameters. The sensitivity of bi was determined using the 
t-test, and the significance of parameter sensitivity was determined by the value of p. The closer to 
0 the value of p was, the more significant the sensitivity was. A model parameter is identified as a 
sensitive one when the value of p was less than or equal to 0.05. 
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3.2 Automatic calibration method 

The Sequential Uncertainty Fitting, ver.2 (SUFI-2) is one of the automatic calibration programs in 
the model calibration tool SWAT Calibration and Uncertainty Programs (SWAT-CUP). SUFI-2 
combines calibration and uncertainty analysis that accounts for all uncertainties. In SUFI-2, model 
output uncertainty is quantified by the 95% prediction uncertainty (95PPU) calculated at the 2.5% 
and 97.5% levels of the cumulative distribution of output variables obtained through Latin 
hypercube sampling (Yang et al., 2008). 
 Here, we used the Nash-Sutcliffe efficiency (NSE) to evaluate the performance of SWAT 
model calibration. The value of NSE ranges from 0 to 1 and a high value indicates a high degree of 
fit between the observed and simulated data (Nash & Sutcliffe, 1970).The goodness of fit and the 
degree to which the calibrated model accounts for the uncertainties are assessed by the P-factor 
and R- factor. The P-factor is the percentage of measured data bracketed by the 95PPU. The R-
factor is the average width of the 95PPU band divided by the standard deviation of the measured 
data. Theoretically, a simulation that exactly corresponds to measured data results in a P-factor of 
1 and R-factor of zero. As a larger P-factor can be achieved at the expense of a larger R-factor, a 
balance must be reached between the two. When acceptable values of R-factor and P-factor are 
reached, then the parameter uncertainties are the desired parameter ranges. Further goodness of fit 
can be quantified by the NSE between the observations and the final “best” simulation (Abbaspour 
et al., 2004, 2011; Schuol et al., 2008).  
 

 

4 DATA AND EXPERIMENT DESIGN 
4.1 Dataset 
In this paper, the DEM data (1:250 000) and land-use data were obtained from the Environmental 
and Ecological Science Data Center for West China, and the soil type data was obtained from 
ISSAS (Institute of Soil Science, Chinese Academy of Sciences). The daily meteorological data 
from 2003 to 2008 of three weather stations, and river discharge data from Yingluo Gorge station 
for the same period, were used.  
 
4.2 Experimental design 
Step one, the applicability of SWAT to the study area was assessed by calibration using discharge 
data for the period 2003–2005 for calibration and the data of 2006–2008 for model validation. Step 
two, the model was calibrated using river discharge data in the years of 2003, 2004 and 2005, 
respectively. And the validation period was set to be same with step one (i.e. the period of 2006–
2008). Finally, the model performances for the four calibrations (i.e. calibration using the data for 
2003–2005, and single year data of 2003, 2004 and 2005) in the validation period were compared 
using the Nash-Sutcliffe efficient (NSE), P-factor and R-factor, as assessment criteria.  
 
Table 1 Parameters selected for calibration and initial ranges. 
Parameters Definition Initial  
ALPHA_BF Baseflow alpha factor (days) 0–1 
ALPHA_BNK Alpha factor for bankstorage 0–1 
CN2 Soil Conservation Service runoff curve number for moisture condition II 70–99 
ESCO Soil evaporation compensation factor 0.8–1.5 
GW_DELAY Groundwater delay time (days) 30–450 
GW_REVAP Groundwater revap coefficient 0–0.2 
GWQMN Depth of water in the shallow aquifer required for return flow to occur (mm) 0–1.5 
SMFMN Minimum temperature-index snowmelt factor 0–7 
SMFMX Maximum temperature-index snowmelt factor 0–7 
SMTMP Snow melt base temperature (°C) –5 to 5 
SURLAG Surface runoff lag coefficient 0–8 
TIMP Snow pack temperature lag factor 0.01–1 
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 To reduce the impact of the automatic optimization method on the results of model 
calibration, the settings of SUFI-2 were made exactly same for the four calibrations. The same 
initial parameter ranges (Table 1) were set. The number of random parameter sets being generated 
was set at 1000. The iteration time for each SUFI-2 optimization was set to be three. 
 
5 RESULTS AND DISCUSSION 

5.1 Model performance using three years of calibration data 

In this study, the SWAT model was applied in the hydrologic simulation for upper Heihe Basin, 
which used the discharge data of 2003 to 2005 for calibration and the data of 2006 to 2008 for 
validation. Results of the model performance are given in terms of NSE, P-factor and R-factor 
indices for both calibration and validation periods (Table 2). In the calibration, the value of NSE 
was 0.65, and 71% of the data were bracketed by the 95PPU with the R-factor equalling 1.08. In 
the validation, the value of NSE reached 0.67, 95PPU captured 67% of the observed data with an 
R-factor of 0.99. That was a satisfactory result for the simulation of daily discharge. The result 
shows that the SWAT model can be used in hydrologic simulation at Yingluo Gorge station. 
 
Table 2 Calibration and validation results for the four data sets. 

Year P-factor R-factor NSE 
Calibration Validation Calibration Validation Calibration Validation 

2003–2005 0.71 0.67 1.08 0.99 0.65 0.67 
2003 0.58 0.48 0.52 0.52 0.74 0.67 
2004 0.78 0.72 1.37 1.1 0.59 0.67 
2005 0.66 0.5 0.66 0.54 0.66 0.67 
 
5.2 Sensitivity analysis of model parameters 

Sensitivity analysis of the model parameters using different discharge datasets is shown in Table 3. 
At the significance level of 0.05, the sensitive calibration parameters found using the 2003–2005 
discharge data are ALPHA_BNK, GW_DEAY and SURLAG; whereas the sensitive parameters of 
calibration using one year of data, 2003, are ALPHA_BNK, CN2, ESCO, GW_DELAY and 
SURLAG; the sensitive parameters of calibration using year 2004 data are ALPHA_BF, 
ALPHA_BNK, and SURLAG; sensitivity parameters of calibration using only year 2005 data are 
ALPHA_BNK, ESCO, GW_REVAP and SURLA. The sensitive parameters derived from the four 
model calibrations are different, which indicates the information content in the four calibration 
datasets is different.  
 
Table 3 Results of parameter sensitivity analysis for the four data sets. 

Parameters 2003–2005 2003 2004 2005 
  t P   t P   t P   t P 

ALPHA_BF 0.14 0.89 –1.31 0.19 –7.13 0 –0.13 0.9 
ALPHA_BNK 32.21 0 9.17 0 28.58 0 5.84 0 
CN2 1.28 0.2 3.6 0 –1 0.32 0.54 0.59 
ESCO 0.05 0.96 43.12 0 0.9 0.37 7.62 0 
GW_DELAY 2.6 0.01 2.47 0.01 0.03 0.97 –1.29 0.2 
GW_REVAP –0.49 0.63 0.49 0.62 1.4 0.16 –2.28 0.02 
GWQMN –0.32 0.75 –0.08 0.94 –0.55 0.58 –20.67 0 
SMFMN 0.86 0.39 –0.11 0.91 –1.78 0.07 –0.37 0.72 
SMFMX –0.32 0.75 0.07 0.94 –0.97 0.33 0.69 0.49 
SMTMP 0.77 0.44 1.34 0.18 0.17 0.87 –0.67 0.51 
SURLAG 2.02 0.04 2.19 0.03 –2.56 0.01 –3.27 0 
TIMP –0.15 0.88 –0.9 0.37 0.63 0.53 –0.63 0.53 
Note: t provides a measure of sensitivity; larger absolute values are more sensitive; p determines the 
significance of the sensitivity. A value close to zero has more significance. 
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5.3 Influence of length of calibration data on model performance 

The simulation results for river discharge using four calibration data sets are shown in Figs 2–5 
and Table 2. For the calibration period, the optimized NSE for 2003 and 2005 was higher than that 
using three year period data, 2003–2005. One possible reason is that the one-year data are easier to 
fit to the model than three-year data. The NSE obtained from calibration using only 2004 data is 
the lowest of the four calibrations, which is possibly due to the fact of the relatively poor quality of 
the precipitation data. NSE values obtained from validation using all the datasets were 0.67, 
 

 
 Fig. 2 Rainfall, observed and simulated discharge and 95PPU (shaded area) for calibration using river 

discharge data of year 2003–2005 and validation period (2006–2008). 

 

 
 Fig. 3 Rainfall, observed and simulated discharge and 95PPU (shaded area) for calibration using river 

discharge data of year 2003 and validation period (2006–2008). 

 

 
 Fig. 4 Rainfall, observed and simulated discharge and 95PPU (shaded area) for calibration using river 

discharge data of year 2004 and validation period (2006–2008). 
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 Fig. 5 Rainfall, observed and simulated discharge and 95PPU (shaded area) for calibration using river 

discharge data of year 2005 and validation period (2006–2008). 
 
indicating that the best parameter values derived from model calibration using only one year of 
discharge data can achieve similar model performance with that using data of three years. 
 In both the calibration and validation period, the values of P-factor obtained from calibration 
using data of years 2003 and 2005 are lower than calibration using the three-year data, which 
means that the number of observations falling into the uncertainty interval reduces, implying that 
the simulation uncertainty increases using the data of 2003 and 2005, respectively, compared with 
using three-year data. Although the value of P-factor for calibration using data of 2004 is higher 
than calibration using three-year data, the value of R-factor is also higher, i.e. the uncertainty band 
is wider, which is a sign of increased uncertainty. In general, using only one year of data for model 
calibration, the simulation uncertainty will be higher than calibration using three-year data. 
 
6 SUMMARY AND CONCLUSION 

This paper compared the results of SWAT model calibration using three-year (2003 to 2005) and 
one single year (2003, 2004 and 2005) of discharge data in the upper Heihe Basin. The best 
parameter set obtained from the SUFI-2 automatic optimization method performs similarly for the 
four calibrations, which indicates that using only one year of data is possible for calibration of 
SWAT effectively. At the same time, the simulation uncertainty for using only one year of data is 
higher. In general, the results of this study demonstrate that calibration of distributed hydrologic 
models using a smaller number of discharge measurements data than commonly used is feasible. 
To analyse the general applicability of using limited numbers of discharge data for the calibration 
of distributed type hydrological models, this method needs to be tested in more basins under 
different climate and runoff generation mechanisms.  
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