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Abstract A new approach to the modelling of the groundwater flow in 
fractured rock is presented in the paper. The empirical knowledge of the 
hydrogeologists is summarized first. There are three types of objects important 
for the groundwater flow—small fractures, which can be replaced by blocks of 
porous media, large deterministic fractures and lines of intersection of the 
large fractures. These objects are by their nature 3-D, 2-D and 1-D, respec-
tively. The rest of the paper describes how to set up a numerical model 
representing all three types of objects. We use existing models based on the 
Mixed-Hybrid FEM and we connect them by equations representing the mass 
exchange between various types of elements. Our model uses two types of 
connection of the elements, the so-called compatible and incompatible types. 
Key words  FEM; fractured rock; groundwater flow; numerical modelling  

 
 
INTRODUCTION AND MOTIVATION 
 
Numerical modelling of the hydraulic, geochemical and transport processes in 
fractured rock has attracted the attention of many scientists for more than 40 years. The 
first numerical models of such processes were created in the late 1960s of the 20th 
century. According to Diodato (1994), more than 30 software packages existed that 
claimed to solve the problem of fluid flow in fractured rock in 1994. 
 Despite these facts, there are a lot of open and unresolved problems in this field of 
research. The reason for such situation lies in the nature of the problem. Lack of input 
data, their uncertainty and often low accuracy, high computational costs are the main 
difficulties we encounter when we try to simulate processes in fractured rock. 
Avoiding these difficulties is usually possible only at a price of simplification of the 
problem. 
 Our research is motivated by the need to find the most suitable locality for a 
permanent deep repository of radioactive waste. There are two nuclear power plants in 
the Czech Republic, a construction of the repository is planned in the 2030s of the 21st 
century. The process of selection of the most suitable locality has already begun, as 
well as some other preliminary projects. Two of them are projects GAČR 102/04/P019 
and MŽP VaV 660/2/03, focused on improving and testing existing numerical models 
and development of the new models. In this paper, we will show one of the results of 
these projects, a new approach for numerical models of groundwater flow which could 
be used for simulations of the processes in the large neighbourhood of the repository. 
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PRINCIPAL IDEAS OF THE MODEL OF FLUID FLOW IN FRACTURED 
ROCK ENVIRONMENT 
 
The radioactive waste repository will be situated in the compact crystalline rock 
massif. Of course, a good and reliable numerical model of the fluid flow and transport 
in such a massif has to reflect its specific properties. The hydrogeological research 
brought the following empirical knowledge about the rock environment there and the 
groundwater flow in them: 
 

(a) The rock matrix can be considered hydraulically impermeable. 
(b) Even the most compact massifs are disrupted by numerous fractures. 
(c) Most of these fractures are relatively small ones, with the characteristic length less 

than 1 m. 
(d) The groundwater flow in the small fractures is extremely slow. 
(e) On the other hand, these small fractures have significant storativity capacity and 

play an important role in the transport processes. 
(f) It is barely possible to obtain exact data for all the small fractures. They must only 

be treated in a statistical way. 
(g) Most of the liquid is conducted by a relatively small number of large fractures. The 

spatial position of these fractures is usually known or detectable by field measure-
ments. 

(h) The fastest flux of groundwater is observed on intersections of large fractures. 
These lines of the intersection behave like “pipelines” in the compact rock massifs. 

 

 These facts lead us to conclude that there are three different types of objects 
involved in the conduction of groundwater through compact rock: small fractures, 
large fractures and intersections of the large fractures. Now let us examine these 
objects from the point of view of numerical modelling. 
 
 
The small fractures 
 
As previously stated, in most cases there is a large number of small fractures in the 
massif. However, we usually know only the data of statistical kind (such as distribu-
tion of poles) about the fractures. There are two possible approaches to the modelling 
of the flow in such environment: the stochastic discrete fracture networks or the 
homogenization and replacement with porous media. 
 The first one is more suitable for small problems (spatial dimension of the domain 
up to tens of metres) but for the large problems (such as simulations of the massif with 
the repository) we encounter serious problems (mainly of the computational nature) 
with usage of that approach (Cacas et al., 1990). 
 On the other hand, the second approach is much more applicable for large 
problems. Fractured rock disrupted only by small fractures can be relatively well 
homogenized and replaced by a porous media with equivalent hydraulic properties. 
The methods of the homogenization and setting the hydraulic parameters of the 
replacing porous media can be found for example in Kirkpatrick (1971), Bear (1993) 
or Bogdanov (2003). 
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The large fractures 
 
The situation here is almost opposite to the previous one. The large fractures are 
relatively well known and not numerous, but causing strong heterogeneity of the 
environment. The methods of homogenization lead to serious errors and inaccuracies 
in this case. However, the discrete fracture networks approach (not stochastic) works 
well, even for large problems if we consider only the large fractures. 
 The DFN approach usually represents the fractures as two-dimensional (2-D) 
objects (circular discs, polygons, etc.) placed in the 3-D space. The transversal 
dimension of the fractures is at least 100 times smaller than the other two dimensions, 
so the representation as 2-D objects causes no significant loss of accuracy of the 
model. The transversal dimension of the fracture effects the values of permeability 
tensor as shown in Bear (1993) or Adler & Thovert (1999). 
 
 
The intersections of the large fractures 
 
This case is similar to the previous one. The objects of this type are relatively rare in 
the rock massif, but significant for the fluid flow. The velocity of the flow on the 
intersection of fractures can be higher in order of magnitude than the velocity in the 
fractures. Fortunately, the velocity is still low enough for holding the assumption of 
the potential flow governed by Darcy’s law. For the same reasons as in the previous 
case we can treat the intersections as 1-D objects placed in 3-D space. 
 As a result of the previous paragraphs, we can say that the model of groundwater 
flow in the compact rock massifs should incorporate 3-D porous blocks, 2-D fractures 
and 1-D lines. So we have three different domains in the area of interest, which are 
hydraulically connected. This problem is similar to the double-porosity approach used 
in the models of transport in porous media (Chen, 1989). However, the double-
porosity models use domains of the same dimension, with no potential flow in one of 
the domains and with the mass-exchange between the domains driven by diffusive 
processes. These three facts make a difference between our problem and the problem 
of transport in the double-porosity environment. 
 
 
Approximation of the flow problem in each domain 
 
We will show an approximation of the flow problem in each of the three domains 
without communication with the other ones in this section. 
 We have three domains Ωi, i is an index denoting the dimension i∈{1,2,3}. Ω1 is a 
set of mutually connected line segments placed in 3-D space, Ω2 is a set of mutually 
connected polygons placed in 3-D space and Ω3 is a simply connected 3-D domain. 
We can define a potential driven flow in each of these domains. The governing 
equations are the linear Darcy’s law and continuity equation: 

iii piKu Ω∇⋅−= on      (1) 

iii qu Ω=⋅∇ on      (2) 
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where ui is the velocity of the flow (u2 has to lie in the particular polygon, u1 has to 
have the direction of the particular line), pi is the hydraulic pressure, Ki is the second-
order tensor of hydraulic conductivity (i × i symmetric, positive definite matrix) and qi 
is the function expressing the density of sources/sinks of the fluid. We prescribe three 
types of the boundary conditions on the ∂Ωi—Dirichlet’s, Neumann’s and Newton’s: 

iDiDi pp Ω∂= on      (3) 

iNiNii unu Ω∂=⋅ on      (4) 

iWiNiDiii uppnu Ω∂=−σ−⋅ on)(      (5) 

where piD, uiN  and σ are given functions. 
 For the approximation of these three problems we use the Mixed-hybrid FEM with 
the lowest-order Raviart-Thomas elements on tetrahedras in Ω3, triangles in Ω2 and 
line segments in Ω1. The rigorous formulation of the continuous problem and the 
derivation of the discretized problem can be found in Maryška et al. (2000) or 
Kaaschieter & Huijben (1992) for the problem in Ω3, in Maryška et al. (2005) for the 
problem in Ω2 and in Tauchman (2003) for the problem in Ω1. 
 The discretization leads to the system of linear equations in form: 

1CpBuA iiiiiii r=λ++  

2uB ii
T
i r=      (6) 

3FuC iiii
T
i r=λ+  

where λi are traces of the pressure on the sides of the mesh. We rewrite this system of 
equations in abbreviated form: 

Sixi = ri      (7) 

where xi = [ui, pi, λi], ri = [ri1, ri2, ri3]T and 
 
 
 
 
 

 
 
Connection of the independent problems 
 
We will show how to connect the three independent problems presented in the 
previous section and how to express the mass exchange between the domains Ω1, Ω2 
and Ω3. Due to properties of the mixed-hybrid formulation we can do that on the level 
of the discretized problem. 
 First, we join the three systems in (7) into one large system: 

Sx = r      (8) 

where x = [x3, x2, x1]T, r = [r3, r2, r1]T and: 
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Compatible and incompatible connection of the elements 
 
We allow two different kinds of connections of the elements with different 
dimensions, called compatible and incompatible. This fact makes our model unique 
from most other numerical models using the elements of different dimensions. These 
models (such as FEFLOW) allow only compatible connections. 
 The difference between this two kinds of connection is shown in Fig. 1. The com-
patible connection requires the element of lower dimension placed exactly on the side 
or edge of the element of higher dimension. This connection seems to be a natural way 
of connecting the elements in the FEM models, but it causes serious and almost 
unsolvable problems at the stage of the mesh generation for problems with complex 
geometry of the domain. Unfortunately, the fractured rock massifs fall into this 
category of problems. 
 This is the reason for allowing the other kind of the elements’ connections—so 
called incompatible. In this case, there is no requirement on the spatial position of the 
communicating elements with different dimensions, the only requirement is on their 
sizes. We should use approximately the same discretization parameter hi for all three 
meshes to avoid the situations shown in Fig. 2. 
 
 

 
Fig. 1 Example of the compatible and incompatible connection of the elements. 

 
 

 
Fig. 2 An unsuitable connection of the 1-D and 2-D elements, h1 >> h2. 
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The mass exchange in the compatible connection between two elements 
 
We will start the derivation of the equations for the mass exchange for the most simple 
case—compatible connection between two elements. The derivation will be shown in 
the case of 1-D and 2-D elements, the case of the connection of 2-D and 3-D elements 
is completely analogous. The situation is drawn in Fig. 3. We do not consider direct 
compatible connection of 1-D and 3-D elements. If we need to incorporate the 
connection of this kind to our problem, we can do this indirectly by 2-D element, 
connecting both these elements, or by setting the connection as incompatible. 
 
 
 
 
 
 
 
 
 

 

Fig. 3 Fluxes and pressures for the compatible connection of 1-D and 2-D element. 
(The elements are drawn separated and shifted in the direction of the dotted line.) 

 
 
 First, let us examine the original state. The marked side of  the triangular element 
is considered as an external side of the 2-D mesh. We assume the homogenous 
Neumann’s boundary condition on this side: 

0=Cu       (9) 

This equation can be found as one line of the block C2
T of the matrix S2 and right hand 

side r23. For the 1-D element, there is a mass balance equation written in the form: 
02,11,1 =−− uu    (10) 

which can be found in block B1
T of the matrix S1 and the vector r12. 

 Now we express the exchange of the mass between the elements. We consider the 
flux uC between 2-D and 1-D element is proportional to the pressure gradient between 
the elements: 

)( 12 pu CC −λσ=    (11) 

λ2 is the pressure on the side of the 2-D element, p1 is the pressure in the centre of the 
1-D element and σC is the coefficient of proportionality. The mass balance equation for 
the 1-D element can be written as: 

02,11,1 =−− uuuC    (12) 

We can rewrite equations (11) and (12) as: 

012 =σ+λσ− pu CCC    (13) 

012,11,12 =σ−−−λσ puu CC    (14) 

λλλλ2 

uC 
u1,1 u1,2 
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Fig. 4 Setting up a compatible connection between 1-D and 2-D element in the matrix S. 

 
 
 If we compare (9) with (13), and (10) with (14), we notice that it is sufficient to 
add or subtract coefficient σC to four elements of the matrix and we make the desired 
connection between the system S1x1 = r1 and S2x2 = r2. The changes in the matrix S are 
shown in Fig. 4. 
 After adding values for all compatible connections (of both kinds, 1-D with 2-D 
and 2-D with 3-D elements) to the system (8), the matrix S changes its structure to this 
form: 

 

 

 
 
 
 
                                (15) 
 
 
 
 
 
 

(where FCi are modified blocks Fi and Ei are blocks created by the connecting of the 
elements. 
 
 
The mass exchange in the case of the incompatible connection of the elements 
 
In this section we will derive the equations describing the mass exchange between the 
elements of different dimensions connected incompatibly. As in the previous section, 
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Fig. 5 Fluxes and pressures for the incompatible connection of 1-D and 2-D element. 
 
 
we will show the derivation on the example of 1-D and 2-D elements, the procedure is 
the same for the other two cases (1-D with 3-D and 2-D with 3-D). The situation is 
shown in the Fig. 5.  
 The flux uI between the elements is proportional to the pressure gradient as in 
previous case of the connection. We can express it like: 

( )12 ppu II −σ=    (16) 

where p2 is the pressure in the centre of the triangular element and p1 is the pressure in 
the centre of the linear element. The coefficient σI has to reflect the size of the 
intersection of the elements and the distance of their centres. We write the mass 
balance equation for the triangular element: 

03,22,21,2 =−−−− Iuuuu    (17) 

where u2,1, u2,2, u2,3 are fluxes through the sides of the triangle. For the linear element, 
the mass balance equation is: 

02,11,1 =+−− Iuuu    (18) 

where u1,1, u1,2 are fluxes through the ends of the linear element. If we substitute (16) in 
to (17) and to (18) we obtain: 

0123,22,21,2 =σ+σ−−−− ppuuu II    (19) 

0122,11,1 =σ−σ+−− ppuu II    (20) 

as the original mass balance equations were: 

03,22,21,2 =−−− uuu  

02,11,1 =−− uu  

 It can be seen that the incompatible connection of the elements can be realized by 
adding/subtracting the value σI to elements of the matrix SC shown in Fig. 6. 
 This procedure can be repeated for each pair of the elements connected by the 
incompatible connection. The changes happen in the blocks Di of the matrix (15), we 
call the changed block DIi and there are new blocs Gij. 

u2,3 

u2,2 u2,1 

u1,1 u1,2 p1 

uI 

p2 



Numerical modelling of the groundwater flow in fractured rock massifs 
 
 

 

263

 
Fig. 6 Setting up an incompatible connection between 1-D and 2-D element in the 
matrix SC. 

 
 
Some remarks concerning the connection of the particular models 
 
 Rearrangement of the resulting matrix The matrices produced by the MH-FEM 
models have some special properties. The most important of them is the positive 
definiteness of block A. The specialized solvers of linear equations use this property of 
the matrix to make the process of solving more effective. Therefore it is wise to keep 
this property in our new model too. This goal is easy to achieve by a rearrangement of 
the state matrix, vector of solution, and the vector of unknowns: 

 
 
 
 
 
                              (21) 
 
 
 
 
 

 As the right-hand side we use the vector: 

[ ]TCI rrrrrrrrrr 132333122232112131 ,,,,,,,,=  

the vector of unknowns has form 

[ ]TCI pppuuux 123123123 ,,,,,,,, λλλ=  

 The domain Ω In previous text we have considered the domain Ω as: 

321 Ω∪Ω∪Ω=Ω  
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providing that at least two of the three sets Ω1∩Ω2, Ω1∩Ω3, Ω2∩Ω3 are non-empty. 
This was a natural presumption for the purposes of the derivation of the model. If we 
have a model constructed by the above described procedure, we can weaken the 
requirement on Ω: It is sufficient to presume the Ω to be a simply connected set in the 
Euclidean space E3: 

321 Γ∪Γ∪Γ=Ω    (22) 

where Γ1 is a set of line segments placed in the three-dimensional space, Γ2 is a set of 
polygons placed in the three-dimensional space, Γ3 is a set of 3-D domains. 
 

 The boundary conditions The original requirement on boundary condition was 
the existence of the three non-empty parts of the boundary ∂ΩiD. We can weaken this 
requirement by the same way as we did for the domain Ω. Now it is sufficient to 
require only the existence of a non-empty part of the boundary ∂ΩD of Ω, with the 
prescribed boundary condition of the Dirichlet’s type. 
 
 
EXAMPLES OF RESULTS CALCULATED BY THE MODEL 
 
We have implemented this approach for solving the flow problem in the programming 
language C. The resulting program is the subject of testing at the time of writing of this 
paper. The first results of the testing shows that the hydraulic communication and the 
mass exchange between elements of various dimensions works well and the behaviour 
of the groundwater calculated by our program has properties of the behaviour of the 
groundwater in real fractured rock massifs.  
 
 

 
Fig. 7 Example of the results of the benchmark testing problem. 
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 An example of one of the benchmark problems for the model of the fluid flow is 
shown in Fig. 7. 
 This problem simulates a block of sloped landscape—simulated as a porous media, 
disrupted by three large fractures. The triangular elements of the fractures are connec-
ted in an incompatible way with the tetrahedral elements of the porous media. There is 
also a set of triangular elements on the upper side of the model, for the simulation of 
the surface flow. The connection between these elements and porous media is the 
compatible one. The lowest edge of the upper side represents a water stream. There are 
several 1-D elements, connected compatibly with the surface elements. We have 
prescribed constant nonzero density of the liquid sources on the surface to simulate the 
rainfall. The results show that the simulated flow field is in good agreement with our 
expectations. 
 
 
CONCLUSIONS 
 
We have introduced a way to set up a numerical model of the groundwater flow in the 
fractured rock environment. Our approach uses the mixed-hybrid FEM on three 
hydraulically connected domains. 
 There are some open problems and unanswered questions concerning this 
approach: 
– Although the results of the tests seem to be quite positive, we still know nothing 

about behaviour of our model in large, real-world hydrogeological problems. 
– We have to define an algorithm for prescribing the values of the coefficients σC 

and σI . This algorithm will be based on our experiences gained by calculation of 
real-world problems. These two coefficients will be good parameters for the 
calibration of the models. 

– Still there is no rigorous theoretical background for the new model. We have 
proved the existence, uniqueness of the solution and the estimation of the error for 
all three models we used for the construction of the new one. These proofs for the 
new model are the goals of theoretical works in the next months. 
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