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Abstract The specific objective of this paper is to provide an overview of the 
collaborative projects between the University of Oslo (Norway) and Cemagref 
(France). The research undertaken concentrated on the development of 
methods for estimating statistical properties of the water balance components 
(especially runoff) at ungauged locations. Probability and Statistical Theory is 
used to estimate runoff characteristics related to various scales in time and 
space. A river basin was studied as a system consisting of interacting entities 
without splitting it into these entities—looking for patterns rather than isolated 
steps of causality, i.e. letting the data speak for themselves. Links between the 
water balance statistics and the way they develop in time and/or in space, i.e. 
along the river network, are analysed and these dependences are introduced 
explicitly in interpolation procedures. Thus the approach preserves the 
statistical properties in terms of covariances and semi-variograms at a basin 
scale as well as satisfying water balance constraints. A review of the basic 
concepts is given first. Second, applications of the concepts are presented with 
examples of their application to different extensive datasets (France and Costa 
Rica) and for different hydrological variables. Mean annual and monthly 
discharges and flow duration curves are investigated in this article. 
key words  empirical orthogonal function; flow duration curve; runoff; scale;  
stochastic interpolation 

 
 
INTRODUCTION 
 
A fundamental problem in applied hydrology is to estimate runoff parameters at an 
ungauged location. Various methods have been developed for this purpose and the 
results are often summarized by maps of runoff characteristics over the studied region. 
Maps produced manually (Gannett, 1912) were published first, since computation 
facilities were limited at the time they were made. The procedures involved in 
producing these maps needed lots of attention and were highly time consuming and 
usually subjective. Empirical relationships among average streamflow, land use, 
geomorphology and climate have received wide attention for several decades 
(Solomon et al., 1968; Liebscher, 1972; Hawley & McCuen, 1982; Gustard et al., 
1989; Vogel et al., 1999). They have usually been established by multivariate regional 
regression. Drainage area and precipitation are by far the most explanatory variables. 
Other basin characteristics may be incorporated, but their inclusion in relationships is 
not warranted. One critical point is that when values are required at ungauged 
locations, each gauged basin has the same weight in the calculation. Our experience is 
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that geographical proximity criteria give more reliable estimates and this is the 
background for the approach developed herein. 
 Runoff is, by definition, an integrator of a random spatially distributed process. 
The spatial variability of runoff characteristics is mostly governed by the river 
network. From upstream to downstream, the basins collect water from tributaries with 
sometimes different river flow regimes. One consequence is that the hydrological 
information cannot be propagated in all directions but in a preferred direction along the 
river network. The size of the basin as well as the topology of the river network 
influence most parameters like variance-covariance, skewness of the original data 
series, and all statistics of low flow and floods (Gottschalk, 1993).  
 The objective of this paper is to present an approach that we will call the 
“hydrostochastic” approach. This approach attempts to incorporate the previously 
mentioned properties of runoff characteristics in an interpolation framework:  
 

– a river basin is studied as a system consisting of interacting blocks without 
decomposing it into blocks—looking for patterns rather than identifying steps of 
causality, i.e. letting data speak for themselves; 

– a river basin is studied in its context looking at it from outside in search of 
contextual rules of its functioning (water balance, consistency with statistical 
laws); 

– the theoretical background is given by Probability and Statistical Theory to analyse 
and model results of integration in space over a drainage basin and in time over an 
interval following the structure of the river network.  

 

 These concepts have been applied in a number of studies (Gottschalk & 
Krasovskaia, 1998; Sauquet et al. 2000a,b; Skøien et al., 2005). The following sections 
briefly describe the developments. Applications of these concepts to map monthly 
discharges and to estimate flow duration curves are presented using different extensive 
datasets in France and in Costa Rica. 
 
 
MAPPING MEAN ANNUAL RUNOFF 
 
Starting with the most fundamental characteristic of runoff—the long-term mean qa(A) 
for a basin A—it must be so that the values over M sub-basins ∆Ai, i = 1, …, M should 
sum up to the value at the outlet for total basin A. This is the water balance equation 
for the lateral flow in a basin or in a statistical sense the average value for the whole 
basin should be consistent with averages over its parts. Mapping the mean value is a 
rather straightforward task and basically it is a problem of stochastic interpolation with 
local support (or block kriging) with an added water balance constraint. Gottschalk 
(1993) introduced a method for stochastic interpolation of runoff along the river 
network with a constraint preserving the water balance, i.e. at each downstream point 
in the river the runoff is the sum of the upstream inflow. Sauquet et al. (2000) 
developed this methodology further and combined it with a system for structuring 
hydrographical networks in a hierarchical way called HydroDem (Leblois & Sauquet, 
2000). It allows an effective reconstruction of the variation of mean annual runoff (first 
order moment) along the river network in a basin from discharge observations and a 
DEM. The resolution of the underlying DEM defines the size of computational units 
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(grid cells, sub-basins). The applications below use maps of the long-term annual mean 
derived in this manner. 
 
 
MAPPING MEAN MONTHLY RUNOFF PATTERN 
 
Variables under study 
 
Traditionally, the variable considered is runoff observed at the outlet at gauging 
stations. When measurements at a gauging station are directly used in the interpolation 
scheme, redundant information is introduced due to partial overlapping drainage areas 
resulting in bias in the spatial analysis. Here, runoff generated by each portion of the 
basin between two or more gauging stations or uppermost headwaters are considered 
instead. These runoff values are calculated by subtracting the discharge(s) measured 
upstream from the value observed downstream. If N gauging stations are available, N 
basins or sub-basins Ai ,i = 1, ..., N can be defined and N related runoff values 
computed. To eliminate scale effects within the dataset due to the size of the basin, 
mean annual runoff qa(Ai) and the 12 monthly discharges qm(Ai, t), t = 1, …, 12 are 
expressed in mm year-1 and mm month-1, respectively.  
 The pattern of monthly values is estimated following a procedure that accounts for 
the dependence between consecutive monthly discharges imposed by groundwater 
storage, flow routing in addition to scale effect, and links to topological river patterns. 
Temporal disaggregation of the mean annual discharge is considered to ensure 
consistency with the map of mean annual runoff. The interpolation will deal with 
dimensionless discharges, i.e. the 12 coefficients: 

( ) ( )
( )Aqa

tAqmtAZ ,, =  (1) 

where ( )Aqa  is the mean annual runoff. ( )Aqm  is the average of the 12 long-term 
monthly flows and an approximation is given by:  

( ) 12/)(AqaAqm =  (2) 

and: 

( ) 12/1≈AZ  (3) 

 To keep the month-to-month dependence within the flow pattern, the time-series 
of Z is interpreted as linear combinations of L temporal functions βi invariant in space: 

( ) ( ) ( ) ( ) 12...,,1 ,,
1

=βα+= ∑
=

ttAAZtAZ
L

i
ii  (4) 

where L ≤ 12 and the weight coefficients αi(A) vary in space but are constant in time. 
The Empirical Orthogonal Function (EOF) analysis (Holmström, 1963) is a convenient 
method to extract the L significant amplitude functions from a dataset of observed 
times-series. αi, i = 1, …, L are the eigenvectors of the covariance matrix between all 
the sub-basins. The number of variables to be interpolated is reduced from 12 to L. 
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An adaptation of kriging 
 
With kriging the estimated value z(u) at location u is a linear combination of observed 
values z(ui), i = 1, …, N located in the neighbourhood of u: 

∑
=

λ=
N

i
ii zz

1
)()( uu  (5) 

where the weights Nii ,,1, K=λ  are found by minimizing the expected error, under 
an unbiasedness constraint (i.e. the expected bias is equal zero). Under the assumption 
that the process is homogeneous, this leads to the resolution of the following linear 
system (Matheron, 1965): 
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where: ji uu −  denotes the Euclidian distance between iu  and ju , µ is a Lagrangian 
multiplier and γ is the theoretical model function to the distance fitted to the empirical 
semi-variogram. This approach is widely used in the interpolation of meteorological 
fields (e. g. Creutin & Obled, 1982) but needs to be adapted for runoff features zq that are 
related to areas. In particular, a relevant distance between pairs of basins has to be 
defined. Huang & Yang (1998) used the distance between the centres of gravity. The 
main drawback in this approach is that several basins may have the same centre of 
gravity. That is why the average of all possible distances between two sub-basins A and 
B, as suggested by Ghosh (1951), is used here instead. This distance is determined as: 

( ) ∫∫ −=
BA

BABAAB
BAd

,

1, duduuu  (7) 

 Possible theoretical models of the semi-variogram are tested and compared 
graphically to the empirical semi-variogram. The selected function for γ is the one 
giving the best fit. The runoff characteristic zq(A) related to the element A is calculated 
using the weighted linear combination of N observed values zq(Ai), i = 1, …, N: 

∑
=

λ=
N

i
iqiq AzAz

1
)()(  (8) 

 When spatial homogeneity is rejected, an empirical formula linking the area-
related runoff values zq to K basin characteristics Xi, i = 1, …, K is fitted: 

))(()(* AXfAz iq =  (9) 

)(*)()( AzAzA qqq −=ε  is the residual interpolated by kriging under the assumption 
of a second-order stationarity random field. Including basin descriptors in the 
empirical formulas is a way of accounting for the fact that streamflow data result from 
processes operating over the whole basin. The combination of the map of the residuals 
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and the map of zq* gives an estimate of zq for each area ∆Ai, i = 1, …, M. A special 
case is when runoff is estimated on elements of a partition of the study area ∆Ai, i = 1, 
…, M. Estimated runoff values can be provided along the river network at any point u 
considered as the outlet of the upstream area. The annual and monthly discharges are 
the sums of the runoffs generated in all fundamental units ∆Ai flowing into that 
location u.  

∑
⊂∆

∆∆=
AA

ii
i

AAqa
A

qa )(1)(u  (10) 

( ) ( )∑
⊂∆

∆∆=
AA

ii
i

AAqm
A

tqm 1,u , t = 1, ..., 12 (11) 

where A is the drainage area at location u and discharge are expressed in mm. Equation 
(11) can be developed using equation (3) and equation (4): 
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REGIONALIZATION OF FLOW DURATION CURVES  
 
Flow Duration Curves (FDC) are widely used in applied hydrology. A common 
practice for regionalization of FDCs is to derive a dimensionless FDC (DFDC) from 
observed FDCs valid within a homogeneous region, assuming that this DFDC can be 
transferred to a site with no data. This DFDC is obtained by dividing all observations 
by the mean annual flow (Yu & Yang, 1996, Singh et al., 2001). Here the same 
standardization procedure is used, but the regionalization is supported by scaling 
properties, i.e. a relationship between the parameters of the DFDC and the first 
moments of the time series. First we consider the normalized daily runoff, in the same 
way as before (equation (1)): 

( ) ( ) ( )AqatAqtAZ /,, =  (13) 

and then model the covariance between the values ( )1AZ  and ( )2AZ  over two (basin) 
averages with areas A1 and A2, respectively, by a theoretical function: 

( ) ( )[ ] ( ) ( ) ( ) ( )∫ ∫ ∫ ∫ ′′′′′′ρ′′σ′σ=′′′′′′=
1 1 1 1

,1,1;ZCov
2121

21
A A A A

dd
AA

ddCov
AA

AZA uuuuuuuuuu  

   (14) 
where ( )uu ′′′,Cov  and ( )uu ′′′ρ ,  is the point covariance and correlation functions, σ(u) 
the point standard deviation and with u′ representing a point within the basin area A1 
and u″ within the basin area A2. The variance is formalized by: 

( )[ ] ( ) ( ) ( ) ( )∫ ∫ ∫ ∫ ′′′′′′ρ′′σ′σ=′′′′′′=
A A A A

dd
A

ddCov
A

AZar uuuuuuuuuu ,1,1V 22  (15) 

 Aggregated values were assigned to each couple of gauged basins applying 
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equation (15). The choice of the best point function is based on a comparison between 
theoretical values and empirical values. As we are dealing with normalized values Z(A) 
the standard deviation equals the coefficient of variation of the original variable q(A). 
These calculations allow mapping of the coefficient of variation along the river 
network. The next step is to establish the dependency between the DFDCs and use 
them to calculate percentiles of the normalized flow duration curve. The interpolated 
mean annual runoff (obtained by the procedure detailed in the previous section) is 
introduced to finally calculate the percentiles of the FDC (for more details see 
Krasovskaia et al., 2005).  
 
 
APPLICATION 
 
The study areas 
 
The study areas cover Costa Rica and France, except for the rivers flowing into the 
Mediterranean Sea. In France, the snowmelt-fed regimes are found in the mountainous 
part (high altitude rivers in the Pyreneans) in contrast to the northern and western part 
of the study area under Atlantic climate influences, where the pluvial regime is 
governed by rainfall and evaporation dominates (alluvial plains of the Seine basin and 
rivers from Brittany). In Costa Rica, tropical river flow regimes dominate with high 
flows in autumn and a temporal variability closely connected to the El Nino Southern 
Oscillation Index. The French and Costa Rican data sets will be used to illustrate 
mapping mean monthly runoff and flow duration curves, respectively. 
 
 
Database 
 
A total of 726 French stations and 70 Costa Rican stations with minor human impact were 
considered for this application. Mean annual runoff for the gauged basins ranges from 100 
to more than 1500 mm in the French area. Mean annual runoff can be higher than 5 m 
year-1 in the centre of Costa Rica, varying on average around 2000–4000 mm year-1. 
 The interpolation scheme requires a well-defined hierarchical structure of the river 
network to identify links with runoff variability and to be utilized thereafter in the 
interpolation procedure. The river network has been extracted from a raster digital 
elevation model DEM with 1 × 1 km cells. Basin attributes are calculated by 
combining GIS layers with the drainage pattern. The mean basin elevation was a single 
basin characteristic utilized as at large scale relief, is the most important physiographic 
factor. The French study area was divided into five major hydrological sub-areas based 
on topography. In Costa Rica the hydrological conditions are different at either side of 
the water divider between the Pacific and the Caribbean basins. Separate calculations 
have therefore been made for the Caribbean and Pacific regions. 
 
 
Mapping mean monthly runoff, an example from France 
 
Results are detailed for one region which includes the Dordogne basin, the Garonne 
basin and coastal rivers in the southwest of France. Runoff estimates were computed 
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for more than 5100 elements of a partition of the study area ∆Ai, i = 1, …, M, 
considered as fundamental units (i.e. M non-overlapping small target elements that 
form the whole study area).  
 EOF analysis was achieved using a sub dataset of 205 gauging stations. Eleven 
independent amplitude functions were identified and arranged in descending order 
according to their contribution to the explained variance. The first four of them 

4...,,1 , =β ii  (Fig. 1) explained more than 98% of the total variance within the dataset, 
and consequently four weight coefficients were considered for the mapping. The 
amplitude function β1 stands for the largest portion of the explained variance (84%) 
and describes the most common monthly pattern within the dataset.  
 The regionalization procedure is illustrated on the example of the mean annual 
runoff qa and the first weight coefficient α1. Empirical relationships were established 
between runoff characteristics and H, the mean elevation: 

qa* = –0.0423H + 261.73 + 0.0735 (R2 = 0.40) (16) 

α1* = –0.0263(H/1000)2 + 0.0144(H/1000) + 0.0735 (R2 = 0.55) (17) 

 The same procedure is applied to the three other weight coefficients αi, i = 2, ..., 4. 
Residuals are calculated at the gauging stations and an exponential model is fitted to 
the experimental variogram (Fig. 2). Figure 3 displays the final map of the first weight 
coefficient α1, which is a combination of the map of residuals ε1 and the empirical 
formula application α1*. α1 is close to zero for rivers with an even flow regime 
whereas a high positive value for α1 shows a contrasted regime, with pronounced 
seasonal variation. 
 All the results from the interpolation were combined to estimate the long-term 
mean monthly pattern (Fig. 4). Low flows in January are noted in the Pyrenean sector 
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Fig. 1 Amplitude functions for southwestern France.  
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Fig. 2 Empirical relationship between mean annual runoff and mean elevation and 
semi-variograms for the residual of this relationship for the southwestern part of 
France. 

 
 

 
Fig. 3 Map of the first spatial component for the southwestern part of France. 
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while water is abundant in the northwestern part of France affected by oceanic rains. 
High values are found in the mountainous sector with moderate altitude. In July, the air 
temperature is above zero in the Pyrenean sector. Melting snow at high altitude in the 
Pyreneans in July generates monthly flow peaks, elsewhere evaporation processes are 
predominant and cause low flow in the rivers.  
 
 
Regionalization of flow duration curves, an example from Costa Rica 
 
The DFDC were mapped along the river net using the established strong dependency 
between the percentiles of the normalized runoff and the coefficient of variation, 
shown in Fig. 5, together with the interpolation procedures described in the previous 
chapter for interpolating the mean annual runoff and the coefficient of variation along 
the river net.  
 The dependence shown in Fig. 5 allows establishing a linear regression between 
the values of the variation coefficient and percentiles of the normalized runoff. As 
example, the relationship between the normalized percentile p = 1% and the coefficient 
of variation is linear: 

12.099.4%1 +== CvZ p  (R²=0.93) (18) 

 It is interesting to note that at the duration level of 80% there is almost no 
dependence on the coefficient of variation, while it is high for, for example, 50%, i.e. 
the median.  
 The map of the coefficient of variation over Costa Rica is shown in Fig. 6. This 
map is consistent with the statistical law for variance reduction of the mean annual 
runoff (not shown in this paper). Figure 7 shows the Dimensionless Flow Duration 
Curves (DFDC) for the Caribbean region. It can be noticed that almost all DFDCs 
 
 
 

 
Fig. 5 Relationship between the coefficient of variation and normalized percentiles in 
Costa Rica. 
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have a value equal to one when the duration is close to 30%. This property is also 
observed under other climate conditions. 
 
 

 
Fig. 6 Map of the coefficient of variation of daily runoff for Costa Rica. The map 
shows basin values along rivers. 

 

 
Fig. 7 Observed Dimensionless Flow Duration Curves (Caribbean area, Costa Rica). 
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 Thus, the procedure for estimating the daily runoff corresponding to the 
percentiles p, is as follows: extract the value of the coefficient of variation and the 
mean annual runoff from the map, apply the relationships between the coefficient of 
variation and the normalized percentiles and multiply the obtained value by the 
extracted mean annual runoff value. 
 
 
CONCLUSIONS 
 
An approach to estimate runoff characteristics at ungauged locations based on a 
hydrostochastic concept is presented. Runoff is the specific focus for the approach with 
due consideration that this variable represents an integrated value over a basin, i.e. in 
theoretical terms a generalized random process in time and space. Furthermore the 
approach benefits from the fact that different statistical parameters are internally linked 
by statistical and physical laws. The basic parameters are the long-term mean and the 
variance. The developments have been demonstrated on two examples from France 
and Costa Rica. These developments have one common point: the map of mean annual 
runoff from which monthly pattern and DFDC can be straightforwardly derived. In 
practice, the same normalized variable is studied at different time scale and its spatial 
properties are introduced to estimate monthly runoff and percentiles. 
 The hydrostochastic approach is a “top-down” alternative to “bottom-up” rainfall–
runoff modelling and even complements the latter for validation purposes, as rainfall is 
not involved in the interpolation framework. Comparison of maps derived by each 
method, respectively, is a convenient way to identify errors in measurements as well as 
in interpolation or modelling. Noticeable differences between the interpolated values 
and those deduced from the models may be a sign of deficiency of one method or of 
inconsistency in the data. Modelling should benefit from these developments, as one 
major difficulty is to improve the estimate of the parameters of lumped conceptual 
models. 
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