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Abstract Time series analysis requires mapping complex relationships between input(s) and output(s), 
because the forecasted values are mapped as a function of patterns observed in the past. In order to improve 
the precision of the forecasts, a Wavelet Neural Network (WNN) model, based on a combination of wavelet 
analysis and Artificial Neural Network (ANN), has been proposed. The WNN and ANN models have been 
applied to daily streamflow and monthly groundwater levels series where there is a scarcity of other 
hydrological time series data. The calibration and validation performance of the models is evaluated with 
appropriate statistical indices. The results of daily streamflow and monthly groundwater level series 
modelling indicated that the performances of WNN models are more effective than the ANN models. This 
paper also highlights the capability of WNN models in estimating low and high values in the hydrological 
time series data.  
Key words time series; ANN; WNN; streamflow; groundwater levels; India 
 
 
 
INTRODUCTION 
Time series modelling of hydrological variables is of utmost important in the planning and 
management of water resources. Most time series modelling procedures fall within the framework 
of multivariate Auto Regressive Moving Average (ARMA) models. Traditionally, ARMA models 
have been widely used for modelling water resources time-series modelling (Maier et al., 1997). 
Time-series models are more practical than conceptual models because it is not essential to 
understand the internal structure of the physical processes that are taking place in the system being 
modelled. However, these models do not attempt to represent the nonlinear dynamics inherent in 
the hydrological process, and may not always perform well (Tokar et al., 1999). Presently 
nonlinear models such as neural networks are widely used for time series modelling. Artificial 
Neural Networks (ANN) models were widely used to overcome many difficulties in time series 
modelling of hydrological variables (ASCE Task Committee, 2000a,b). However, it is also 
reported that ANN models are not very satisfactory in terms of precision because they consider 
only a few aspects of the behaviour of the time series (Wensheng, 2003). To raise the precision, a 
wavelet analysis has been used along with ANN. The advantage of the wavelet technique is that it 
provides a mathematical process for decomposing a signal into multiple levels of details and 
analysis. Wavelet analysis can effectively decompose signals into the main frequency components 
while also extracting local information of the time series. In recent years, wavelet theory has been 
introduced in the field of hydrology (Smith et al., 1998; Labat et al., 2000). Due to the similarity 
between wavelet decomposition and the single-hidden layer neural network, the idea of combining 
both wavelet and neural networks has resulted recently in formulation of the wavelet neural 
network, which has been used in various fields (Xiao et al., 2005).  
 In this paper, a Wavelet Neural Network (WNN) model, which is the combination of wavelet 
analysis and ANN, has been proposed for time series modelling of four west-flowing rivers in 
India: the Kollur, Seethanadi, Varahi and Gowrihole rivers, and for simulating groundwater levels 
in three observation wells in the Central Godavari Delta, east coast of India, where the availability 
of other hydrological time series data is limited.   
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WAVELET ANALYSIS 

Wavelet analysis involves the decomposition of a signal into shifted and scaled versions of the 
original (or mother) wavelet. In wavelet analysis, the use of a fully scalable modulated window 
solves the signal-cutting problem. The window is shifted along the signal and for every position 
the spectrum is calculated. Then this process is repeated many times with a slightly shorter (or 
longer) window for every new cycle. In the end, the result will be a collection of time-frequency 
representations of the signal, all with different resolutions. Because of this collection of represen-
tations, it can be called a multi-resolution analysis. By decomposing a time series into time–
frequency space, one is able to determine both the dominant modes of variability and how those 
modes vary in time. Wavelets have proven to be a powerful tool for the analysis and synthesis of 
data from long memory processes. Wavelets are strongly connected to such processes in that the 
same shapes repeat at different orders of magnitude. The ability of the wavelets to simultaneously 
localize a process in a time and scale domain results in representation of many dense matrices in a 
sparse form.  
 The discrete wavelet transform of a time series f(t) is defined as:  

dt
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where ψ(t) is the basic wavelet with effective length (t) that is usually much shorter than the target 
time series f(t); a is the scale or dilation factor that determines the characteristic frequency so that 
its variation gives rise to a “spectrum”; and b is the translation in time so that its variation 
represents the “sliding” of the wavelet over f(t). The wavelet spectrum is thus customarily 
displayed in the time-frequency domain. For low scales, i.e. when |a| << 1, the wavelet function is 
very concentrated (shrunk, compressed) with frequency content mostly in the higher frequency 
bands. Inversely, when |a| >> 1, the wavelet is stretched and contains mostly low frequencies. For 
small scales we obtain thus a more detailed view of the signal (also known as “higher resolution”), 
whereas for larger scales we obtain a more general view of the signal structure. 
 The original signal X(n) passes through two complementary filters (low pass and high pass 
filters) and emerges as two signals: approximations (A) and details (D). The approximations are 
the high-scale, low frequency components of the signal. The details are the low-scale, high 
frequency components. Normally, the low frequency content of the signal (approximation, A) is 
the most important. It demonstrates the signal identity. The high-frequency component (detail, D) 
is nuance. The decomposition process can be iterated, with successive approximations being 
decomposed in turn, so that one signal is broken down into many lower resolution components 
(Fig. 1).  
 
 
ARTIFICIAL NEURAL NETWORKS 

An ANN can be defined as a system or mathematical model consisting of many nonlinear artificial 
neurons running in parallel, which can be generated as single or multiple layered. Although the 
concept of artificial neurons was first introduced by McCulloch & Pitts (1943), the major 
applications of ANNs have arisen only since the development of the back-propagation (BP) 
method of training by Rumelhart et al. (1986). Following this development, ANN research has 
resulted in the successful solution of some complicated problems not easily solved by traditional 
modelling methods when the quality/quantity of data is very limited. ANN models are “black box” 
models with particular properties, which are greatly suited to dynamic nonlinear system modelling. 
The main advantage of this approach over traditional methods is that it does not require  
the complex nature of the underlying process under consideration to be explicitly described  
in mathematical form. ANN applications in hydrology vary, from real-time to event-based 
modelling.  
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Fig. 1 Diagram of multi-resolution analysis of signal. 

 
Neural network structure 
The most popular ANN architecture in hydrological modelling is the multilayer perceptron (MLP) 
trained with a BP algorithm (ASCE, 2000a,b). A multilayer perceptron network consists of an input 
layer, one or more hidden layers of computation nodes, and an output layer. The number of input  
and output nodes is determined by the nature of the actual input and output variables. The number 
of hidden nodes, however, depends on the complexity of the mathematical nature of the problem, 
and is determined by the modeller, often by trial and error. The input signal propagates through the 
network in a forward direction, layer by layer. Each hidden and output node processes its input by 
multiplying each of its input values by a weight, summing the product and then passing the sum 
through a nonlinear transfer function to produce a result. For the training process, where weights 
are selected, the neural network uses the gradient descent method to modify the randomly selected 
weights of the nodes in response to the errors between the actual output values and the target 
values. This process is referred to as training or learning. It stops when the errors are minimized or 
another stopping criterion is met. The BPNN can be expressed as:  

Y = f (ΣW X – θ)                                                   (2) 
where X is the input or hidden node value; Y is the output value of the hidden or output node; f() is 
the transfer function; W is weights connecting the input to hidden, or hidden to output nodes; and  
θ is the bias (or threshold) for each node.  
 
Methods of network training 
In the current investigation, the Levenberg-Marquardt (LM) method was used for training the 
given network. LM is a modification of the classic Newton algorithm for finding an optimum 
solution to a minimization problem. The algorithm uses the second-order derivatives of the 
function so that better convergence behaviour is observed. In the ordinary gradient descent 
method, only the first-order derivatives are evaluated and the parameter change information is 
contained solely in the direction along which the cost is minimized. In practice, LM is faster and 
finds better optima for a variety of problems than most other methods (Hagan & Menhaj, 1994). 
The method also takes advantage of the internal recurrence to dynamically incorporate past 
experience in the training process (Coulibaly et al., 2000). 
 The Levenberg-Marquardt algorithm is given by: 

Xk+1 = Xk – (JT J + μ I)-1 JT e                                                  (3) 
where, X contains the weights of the neural network, J is the Jacobian matrix of the performance 
criteria to be minimized, μ is a learning rate that controls the learning process and e is residual 
error vector.  
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 If the scalar μ is very large, the above expression approximates gradient descent with a small 
step size; while if it is very small; the above expression becomes the Gauss-Newton method using 
the approximate Hessian matrix. The Gauss-Newton method is faster and more accurate near an 
error minimum. Hence we decrease μ after each successful step and increase it only when a step 
increases the error. Levenberg-Marquardt has large computational and memory requirements, and 
thus it can only be used in small networks (Maier & Dandy, 1998). However, it is faster and less 
easily trapped in local minima than other optimization algorithms (Coulibaly, 2001a,b,c; Toth et 
al., 2000). 
 
Selection of network architecture 
Based on a physical knowledge of the problem and statistical analysis, different combinations of 
antecedent values of the time series were considered as input nodes. The output node is the time 
series data to be predicted in one step ahead. Time series data was standardized for zero mean and 
unit variation, and then normalized into the range [0 to 1]. The activation functions used for the 
hidden and output layer were logarithmic sigmoidal and pure linear function, respectively. For 
deciding the optimal hidden neurons, a trial and error procedure was started with two hidden 
neurons initially, and the number of hidden neurons was increased up to 10 with a step size of 1 in 
each trial. For each set of hidden neurons, the network was trained in batch mode to minimize the 
mean square error at the output layer. To check for any over-fitting during training, a cross-
validation was performed by keeping track of the efficiency of the fitted model. The training was 
stopped when there was no significant improvement in the efficiency, and the model was then 
tested for its generalization properties. Figure 2 shows the multilayer perceptron neural network 
architecture when the original signal is used as the input to the neural network architecture. 
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Fig. 2 Scatter plots between observed and modelled stream flow in different basins. 

 
 
METHOD OF COMBINING THE WAVELET ANALYSIS WITH ANN 
The decomposed details (D) and approximation (A) are used as inputs to the neural network 
structure as shown in Fig. 1. Here, i is the level of decomposition varying from 1 to I, j is the 
number of antecedent values varying from 0 to J, and N is the length of the time series. To obtain 
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the optimal weights (parameters) of the neural network structure, the LM algorithm is used to train 
the network. The output node represents the original value at one step ahead. 
 
 
PERFORMANCE CRITERIA 
The performance of various models (WNN and ANN) during calibration and validation were 
evaluated by using statistical indices: the root mean squared error (RMSE), correlation coefficient 
(R), and the Nash and Sutcliffe coefficient of efficiency (COE). RMSE measures the residual 
variance; which indicates a quantitative measure of the model error in units of the variable; the 
optimal value is 0. The correlation coefficient (R) measures the linear correlation between the 
observed and modelled values; the optimal value is 1.0. The COE, or efficiency (E%) compares 
the modelled and observed values and evaluates how far the network is able to explain total 
variance of data; the optimal value of COE is 1.0. 
 
 
STUDY AREA AND DATA 
Streamflows 
The Western Ghats form a range of mountains in peninsular India running approximately parallel 
to the west coast and are home to the largest tracts of moist tropical forest in India. The study area, 
is between latitudes 12°N to 14°N and longitude 74°E to 76°E. The basins and gauging stations 
considered for this study are: Kollur at Jadkal (108 km2), Sitanadi at Kokkarne (343 km2), Varahi 
at Dasanakatte (135 km2) and Gowrihole at Sarve Bridge (126 km2). These streamgauges are 
maintained by the Water Resources Development Organization (WRDO), Govt of Karnataka. The 
annual rainfall is as high as 4000 mm; the basins are characterized by steep gradients and good 
forest cover. The bulk of the rainfall occurs during the monsoon season (June–September), which 
accounts for about 80% of the annual total. The daily discharge data for Kollur, Sitanadi, Varahi 
and Gowrihole basins for period of 1981–2002 (22 years), 1973–1998 (26 years), 1978–2003 (26 
years), and 1979–2003 (25 years), respectively, are considered for the study. Due to geographical 
conditions the measurement of daily rainfall and other climatic variables is difficult in densely 
forested basins and the availability of historical data is very limited. 
 
Groundwater levels 
The study area forms a part of the River Godavari delta system in the East Godavari District of 
Andhra Pradesh, India. Geographically the study area, Central Godavari Delta, is located between 
16°25′N to 16°55′N latitude and 81°44′E to 82°15′E longitude with its hydrological boundaries the 
River Gowthami Godavari in the east, the River Vasistha Godavari in the west and the Bay of 
Bengal to the south. The total geographical area is 825 km2. The study area receives more than half 
of its annual rainfall during the southwest monsoon (i.e. June–September), while a large portion of 
the rest occurs in the month of October. In the study area the groundwater is under water table 
conditions and with dense canal network systems. The groundwater utilization for irrigation 
purposes is very limited. The information on historical monthly groundwater draft data and 
monthly canal seepage data into groundwater is very limited. The representative groundwater 
levels are from three observation wells in the Central Godavari Delta: Kattunga, Munganda and 
Cheyyeru, which have long records of groundwater level data (1977–1994). 
 
 
RESULTS AND DISCUSSION 
Streamflows 
The daily discharge data of four west-flowing river basins, namely Kollur, Sithanadi, Varahi  
and Gowrihole for the total period of 1981–2002 (22 years), 1973–1998 (26 years), 1978–2003  
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Table 1 Model inputs for WNN model.    
Model I Q(t)=f (x[t–1]) 
Model II Q(t)=f (x[t–1], x[t–2]) 
Model III Q(t)=f (x[t–1], x[t–2], x[t–3]) 
Model IV Q(t)=f (x[t–1], x[t–2], x[t–3], x[t–4]) 
Model V Q(t)=f (x[t–1], x[t–2], x[t–3], x[t–4], x[t–5]) 
Q(t) is stream flow and groundwater level; f(x( )) is decomposed series of streamflow and groundwater level. 
 
Table 2 Model inputs for ANN model. 
Model I Q(t)=f (Q[t–1]) 
Model II Q(t)=f (Q[t–1], Q[t–2]) 
Model III Q(t)=f (Q[t–1], Q[t–2], Q[t–3]) 
Model IV Q(t)=f (Q[t–1], Q[t–2], Q[t–3], Q[t–4]) 
Model V Q(t)=f (Q[t–1], Q[t–2], Q[t–3], Q[t–4], Q[t–5]) 
Q(t) is streamflow and groundwater level. 
 
Table 3 Performance of WNN and ANN models during calibration and validation. 
Station        Model Calibration: 

RMSE             R                        E (%) 
Validation: 
RMSE              R                       E (%) 

Jadkal  WNN    I 
                          II 
                          III 
                          IV 
                          V 
Jadkal  ANN      I 
                           II 
                           III 
                           IV  

11.36              0.9527                90.76 
  5.69              0.9883                97.68 
  5.07              0.9907                98.16 
  4.37              0.9931                98.63 
  3.82              0.9947                98.95 
14.39              0.9230                85.20 
13.93              0.9280                86.13 
13.75              0.9300                86.49 
13.37              0.9339                87.22  

12.08               0.9703               94.14 
   7.01              0.9907               98.03 
   6.80              0.9908               98.14 
   6.12              0.9925               98.49 
   8.48              0.9859               97.11 
 30.70              0.7893                62.12 
 16.69              0.9492                88.80 
 15.90              0.9522                89.83 
 16.71              0.9446                88.78 

Kokkarne  WNN    
                           I 
                           II 
                           III 
                           IV    
Kokkarne  ANN 
                           I 
                           II 
                           III 
                           IV  

 
 20.16             0.9804               96.12 
 17.71             0.9849               97.00 
 13.27             0.9915               98.32 
 12.20             0.9928               98.57   
 
43.67              0.9044               81.80 
44.06              0.9026               81.48 
44.22              0.9019               81.34 
41.54              0.9140               83.54 

 
 21.57              0.9794                 95.91 
 19.65              0.9830                96.61    
 17.09              0.9873                97.43 
 16.75              0.9876                97.53   
 
 46.25              0.9015                 81.19 
 46.25              0.9012                 81.19 
 46.36              0.9009                 81.10 
 48.48              0.8915                 79.33 

Dasanakatte  WNN  
                           I 
                           II 
                           III 
                           IV 
                           V 
Dasanakatte  ANN 
                           I 
                           II 
                           III 
                           IV       
                          V  

 
11.67             0.9510                90.45 
 6.39              0.9857                97.17 
 5.47              0.9896                97.93 
 4.72              0.9922                98.45 
 4.47              0.9930                98.61 
 
16.16             0.9054                81.98 
15.21             0.9167                84.04 
14.96             0.9195                84.56 
14.93             0.9199                84.62 
14.98             0.9193                84.52 

 
7.30                 0.9655                  93.22 
3.33                 0.9933                  98.59 
3.45                 0.9924                  98.48 
2.80                 0.9950                  98.99 
 3.06                0.9914                  98.81 
 
7.72                 0.9614                   92.40 
7.00                 0.9684                   93.76 
7.07                 0.9680                   93.64 
7.02                 0.9682                   93.73 
7.07                 0.9678                   93.64 

Sarve Bridge  WNN 
                            I 
                            II 
                            III 
                            IV 
Sarve Bridge ANN 
                            I 
                            II 
                            III 
                            IV      

 
10.04            0.9285                86.22 
  5.55            0.9787                95.78 
  4.55            0.9857                97.17 
  4.06            0.9886                97.74 
 
13.02            0.8767                76.86 
12.92            0.8786                77.20 
13.02            0.8766                76.84 
13.13           0.8744                 76.46 

 
11.10                0.9536                  90.94 
  6.84                0.9833                  96.55 
  5.05                0.9905                  98.12 
  6.29                0.9859                  97.09 
 
18.61               0.8658                   74.50 
17.88               0.8860                   76.48 
16.48               0.9031                   80.00 
19.10               0.8623                   73.14 
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(B)  Kokkarne Station

(A) Jadkal Station

(C)  Dasanakatte Station

(D) Sarve Bridge Station

Fig. 3 Scatter plots between observed and modelled daily streamflows.    
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(26 years), and 1979–2003 (25 years), respectively, is used for time series modelling. The daily 
discharge data of these four basins for the period of 1981–1995 (15 years), 1973–1990 (18 years), 
1978–1995 (18 years), and 1979–1995 (17 years) are used for calibration and for periods of 1996–
2002 (7 years), 1991–1998 (8 years), 1996–2003 (8 years) and 1996–2003 (8 years) are used for  
validation period, respectively. The model inputs for each WNN model are indicated in Table 1 
and the model inputs for each ANN model given in Table 2.  
 A total of five sub models were developed for each basin and these models were calibrated 
and tested for daily discharge series data modelling. The performance of these models in terms of  
global statistical tests (RMSE, R and %E) are given in Table 3. Similarly, five ANN models have 
been developed for four basins for the same period in which WNN models are developed. The 
performance of the ANN models in terms of global statistics are shown in Table 3.  
 Table 3 reveals that the RMSE is much better (2.8 to 21.57 m3/s) for WNN models as 
compared to ANN (7.00 to 48.48 m3/s) models in all four basins during the validation period. 
From Table 3, it was also observed that among different antecedent values of the time series 
models (WNN), the model marked with bold shows lowest RMSE (2.8 to 16.75 m3/s), high 
correlation coefficient (0.9876 to 0.9950) and highest efficiency (97.53 to 98.99%) during the 
validation period in all four basins. Therefore, the WNN model (bold in Table 3) is selected as the 
best-fit model as compared to the ANN model to forecast the streamflow for the rivers. Figure 3 
shows the scatter plot between the observed and modelled values of WNN and ANN for four 
stations and shows that the forecast daily flows from WNN models were close to the measured 
values. 
 
Groundwater levels 
The monthly groundwater level data from 1977 to 1994 were taken for three wells, namely 
Kattunga, Munganda and Cheyyeru in the Central Godavari Delta. The period 1977–1989 (13 
years) was taken for calibration and 1990–1994 (5 years) was taken for validation. The model  
inputs for each WNN model are indicated in Table 1 and the model input for each ANN model is 
indicated in Table 2. The performance of the WNN and ANN models are shown in Table 4 which  
 
 
Table 4 Performance of WNN and ANN models during calibration and validation. 
Station        Model 
 

Calibration: 
RMSE         R                   E (%) 

Validation: 
RMSE          R                    E (%) 

Kattunga  WNN 
                              I 
                              II 
                              III  
Kattunga  ANN    
                              I  
                              II 
                              III 

 
 0.789              0.894                79.93 
 0.318              0.983                96.73 
 0.261              0.988                97.80 
   
1.07                0.790                62.50 
0.952              0.841                70.80 
0.782              0.895                80.27 

 
 0.975            0.875                76.43 
 0.536            0.964                92.86 
 0.596            0.955                91.19 
    
 1.62              0.587                34.43 
 1.36              0.739                54.10 
 1.37              0.736                53.14 

Munganda  WNN        
                              I 
                              II 
                              III  
Munganda  ANN          
                             I 
                              II 
                              III  

 
 0.341             0.861               74.16 
 0.165             0.969               93.92 
 0.131             0.980               96.18 
  
0.447              0.745               55.59 
0.367              0.836               70.04 
0.333              0.868               75.38 

 
 0.454            0.870                74.91 
 0.325            0.935                87.10     
 0.324            0.934                87.21 
  
 0.646             0.732               49.22 
 0.668              0.687              45.73 
 0.672              0.694              44.93  

Cheyyeru  WNN      
                             I 
                             II 
                             III    
Cheyyeru  ANN 
                             I 
                             II 
                          III 

 
0.203             0.891                79.40 
0.107             0.970                94.25 
0.082             0.982                96.57 
  
0.341             0.648                42.02 
0.330             0.676                45.74 
0.278             0.784                61.53 

 
0.346                0.826             67.56 
0.188                0.954             90.44 
0.222                0.931             86.64 
 
0.442                0.695             47.10 
0.430                0.731             49.93 
0.468                0.642             40.60  
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Fig. 4 Scatter plot between observed and modelled monthly groundwater levels.    
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shows that RMSE is better (0.188 to 0.975 m) for WNN models as compared to ANN (0.43 to 1.62 m) 
models in all three-observation wells during validation period. From Table 4, it was also observed 
that the models of WNN having different antecedent values of the time series (marked with bold), 
estimated minimum RMSE (0.188 to 0.54 m), high correlation coefficient (0.934 to 0.964) and  
highest efficiency (87.21 to 92.86 %) during the validation period in all three observation wells. 
Therefore, WNN model is selected as the best-fit model as compared to ANN models to forecast 
the groundwater levels in Godavari delta. Figure 4 shows the scatter plot between the observed and 
modelled groundwater levels by WNN and ANN models. It was observed that the values 
forecasted from WNN models were close to the observed values. 
 
 
CONCLUSIONS 
This paper has reported on an application of wavelet neural network (WNN) models for time series 
modelling of daily discharge of four westward flowing rivers in India and monthly groundwater 
levels in the Godavri Delta, Andhra Pradesh, India. Further, ANN models were also developed and 
the results are compared with WNN models. The comparison revealed that the WNN model 
exhibits better performance in modelling daily discharge and monthly groundwater levels. This is 
mainly due to the capability of wavelets to decompose the time series into multi-levels of 
approximation and detail. The models developed for streamflow and groundwater levels would be 
useful for water resources planning in the Western Ghats and for groundwater management in the 
coastal aquifers, respectively. 
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