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Abstract Due to heterogeneity of lands over ungauged/sparsely gauged 
watersheds at which the hydrological flows occur, there is a need to upscale 
the hydrological conservation equations to the scale of the grid areas of the 
numerical mesh laid out over the watershed which is being modelled. A 
literature review of the various methods utilized in hydrology for the upscaling 
of hydrological conservation equations is provided. Then some recent 
formulae for the upscaling of hydrological processes are discussed with an 
application. 
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INTRODUCTION 
 
For the quantification of hydrological water balances over sparsely gauged or 
ungauged regions/watersheds a central issue is how to model the hydrological 
processes at the scale of the grid areas of ungauged small-mesoscale watersheds (grid 
size ~1 km), and of sparsely gauged/ungauged regions (grid size ~10 km). Since there 
may be very sparse or no precipitation/runoff data over an ungauged/sparsely gauged 
watershed, it may be necessary to take a computational network with sufficiently large 
grid areas over such a watershed in order to be able to utilize the sparse data (if there is 
any) or to utilize remotely sensed observations as areally-averaged quantities over such 
grid areas. Then in order to have a scale-consistent description of the hydrological 
processes with respect to both numerical modelling and remotely sensed observations, 
it becomes necessary to develop upscaled hydrological conservation equations for the 
hydrological processes of interest over such grid areas. 
 Here, spatial scale is defined as the observational/computational grid size, while 
the time scale is defined as the observational/computational time interval. In the 
current state of hydrological science the hydrological conservation equations are 
generally known at “point-scale”. The point-scale may be defined as the scale of a 
differential control volume. Currently, the conservation equations for mass, momen-
tum and/or energy at a computational node are obtained at the scale of a differential 
control volume which surrounds that node. Each nodal point of a computational grid 
network represents a surrounding grid area which may range from ~10 m to ~100 km, 
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depending upon the domain being modelled. In order to utilize these hydrological 
conservation equations for modelling hydrological processes at the particular scale of a 
grid area, one makes the assumption that the conservation equation (usually a partial 
differential equation (PDE)) at the node represents the whole hydrological process 
evolving over the area that surrounds that node. This amounts to assuming 
homogeneity of soils, vegetation, geology, topography, and atmospheric inputs over 
the area (volume) that surrounds any nodal point of the computational grid network. 
However, soils, vegetation, geology, topography, and atmospheric inputs over an area 
(volume) that surrounds any nodal point of the computational grid network, are 
heterogeneous. Therefore, a hydrological conservation equation that is derived at the 
point-scale of a node, becomes uncertain (a stochastic PDE) over the grid area which it 
purports to represent, due to uncertainty of its parameters and boundary conditions 
over this area. As such, a point-scale conservation equation can not represent the 
general behaviour of the hydrological process which is taking place over the grid-scale 
area that surrounds that node. Consequently, a fundamental problem is how to upscale 
the existing point-scale hydrological conservation equations for mass, momentum 
(and/or energy) to the increasingly larger spatial scales, in order to obtain the 
conservation equations consistent with the scale of the grid areas over which they will 
describe the hydrological processes at ungauged/sparsely gauged watersheds. 
 There are various approaches to upscaling of hydrological conservation equations. 
In the hydrological literature the most commonly employed approach has been the 
averaging of hydrological conservation equations. The averaging approaches may 
further be classified as: (a) volume/areal averaging, and (b) ensemble averaging. 
 In the volume/areal averaging approach the point-scale hydrological conservation 
equation is integrated over a volumetric or areal domain, and then the resulting 
integrals are divided by the size of the domain. This approach was used in hydrology 
in order to reduce the hydrological conservation equations from their original PDE 
forms at point scale to ODE forms at larger spatial scales. Duffy (1996) reduced the 
unsaturated–saturated subsurface flow conservation equation from its original PDE 
form to a set of ordinary differential equations (ODEs) by means of volume averaging. 
Tayfur & Kavvas (1994, 1998) reduced rill and inter-rill overland flow equations from 
a 2-D PDE at point scale to an ODE at hillslope scale by volume averaging. However, 
this approach leads to closure problems where the hydrological fluxes at the 
boundaries of the flow domain require information on the state of flow within the flow 
domain (Tayfur & Kavvas, 1998).  
 In the ensemble averaging approach one recognizes that the point-scale 
hydrological conservation equations become uncertain (stochastic PDEs) due to the 
uncertain values of their point-scale parameters and boundary conditions at the grid-
area scale. Accordingly, the aim is to obtain an ensemble average form of the original 
point-scale conservation equation (which is a stochastic PDE at grid area scale) that 
will represent its upscaled form at the scale of the modelling grid area.  
 One approach to ensemble averaging is the numerical probabilistic averaging of 
the conservation equations (Avissar & Pielke, 1989; Entekhabi & Eagleson,1989). In 
this approach one assigns probability distributions for the parameters of the point-scale 
conservation equation in order to describe the parameters’ statistical variability within 
a grid area (subgrid variability). Then using these probability distributions, the point-
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scale conservation equations over the grid area are numerically averaged in order to 
obtain the grid area-scale behaviour of the corresponding hydrological process. 
 Meanwhile, there are several analytical approaches to the ensemble averaging of 
the hydrological conservation equations. One approach is the averaging based on 
analytical solutions to realizations (Serrano, 1992; Chen et al., 1994a,b; etc.). In this 
approach one obtains a pathwise analytical solution to the conservation equation, and 
then takes its ensemble average. It is possible to obtain exact analytical closures even 
in nonlinear problems. As such, this approach was successfully applied to the 
ensemble averaging of nonlinear Boussinesq equations (Serrano, 1992) and of 
nonlinear unsaturated soil water flow (Chen et al., 1994a,b). The main drawback of 
this approach is that the analytical solutions are cumbersome and difficult to 
understand/use by third parties.  
 Averaging based on regular perturbations is the most often used analytical 
ensemble averaging approach in hydrology (Gelhar & Axness, 1983; Dagan, 1984; 
Mantoglou & Gelhar, 1987; Graham & McLaughlin, 1989; Tayfur & Kavvas, 1994; 
Horne & Kavvas, 1997, etc.). In this approach one expresses each stochastic parameter 
and each state variable in the conservation equations by a sum of their corresponding 
mean and a small perturbation term. Then this perturbation expression is substituted in 
place of the original parameter/state variable within the conservation equation. The 
expectation of the resulting conservation equation is then taken in order to obtain an 
ensemble average equation for the considered hydrological process. The advantage of 
this approach is that it is straightforward to apply, even in nonlinear cases. However, it 
results in a closure problem where the equation for the mean requires information 
about the behaviour of higher moments. When one attempts to write an equation for 
the required higher moment, then that equation for the specific higher moment requires 
information about the behaviour of even higher moments. Hence, one can close the 
system of equations only by means of some ad hoc assumption. A small perturbation 
assumption is often invalid in highly heterogeneous domains where the hydraulic 
parameters may take large variance values. 
 Another analytical ensemble averaging approach is based upon Adomian’s 
decomposition theory (Adomian, 1986; Serrano, 1992). In this approach the state 
variable in the original conservation equation is decomposed into a series of 
component functions. Then, starting with the deterministic analytical solution to the 
original conservation equation, the other terms in the decomposition are determined 
recursively, where each successive component in the series decomposition 
representation is determined in terms of the preceding component. The decomposition 
method can accommodate any size of fluctuation. It can be applied both to linear and 
nonlinear problems, and avoids closure problems by adding successively smaller 
magnitudes to the solution. Its main drawback is that it requires an analytical solution 
to the conservation equation in order to develop the corresponding ensemble average 
equation. However, such analytical solutions are unattainable in many nonlinear 
hydrological processes. 
 A promising analytical ensemble average upscaling approach is based on 
projector-operator theory (Zwanzig, 1960; Cushman, 1991). In this approach one 
considers an operator which projects quantities onto their averages (Pu = <u>). Then 
applying this operator together with an operator that represents the difference between 
the actual variable and its mean (Du = u – <u>), one derives an exact integro-
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differential equation for the ensemble average which is non-local. This approach does 
avoid the closure problem. However, it is applicable only to linear problems. Also, the 
obtained integro-differential equation is implicit in the state variable. Therefore, it 
requires further approximations for its explicit solution. 
 A popular analytical ensemble average upscaling approach is based on cumulant 
expansion theory (Kubo, 1962; van Kampen, 1976; Kabala & Sposito, 1991; Kavvas 
& Karakas, 1996; Karakas & Kavvas, 2000; Kavvas, 2001). In this approach one 
expresses the original conservation equation in terms of an operator equation with an 
average component and a fluctuating dynamic component. One then solves the 
resulting initial value problem in order to obtain the ensemble average equation, 
expressed in terms of a series of cumulants (correlation functions) of increasing order. 
Truncation at any order cumulant yields an exact closure at that order. However, the 
resulting ensemble average equation is in terms of operators which need to be 
expressed explicitly for practical applications. There are two different approaches for 
obtaining explicit expressions. One approach is the cumulant expansion combined with 
spectral theory (Kabala & Sposito, 1991). This approach takes the Fourier transform of 
the cumulant expansion expression in order to develop an equation for the ensemble 
average in the Fourier space. However, it is still necessary to invert the expression in 
the Fourier space to the real time-space for practical applications. The second approach 
is the cumulant expansion combined with Lie group theory (Kavvas & Karakas, 1996; 
Wood & Kavvas, 1999; Karakas & Kavvas, 2000; Kavvas, 2001, 2002). This approach 
recognizes that the operators in the cumulant expansion representation of the ensemble 
average conservation equation are Lie operators. Then it employs the Lie operator 
properties (Olver, 1993) in order to obtain an explicit expression for ensemble average 
conservation equation in real time-space.  
 By utilizing the combined cumulant expansion-Lie operator theory, a general 
formula for the upscaling of any linear hydrological conservation equation from point-
scale to the next larger spatial scale was developed (Kavvas, 2001). Any linear 
hydrological conservation equation can be written in the operator form: 
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where h is the state variable and A is the operator coefficient function, and x is any 
vectorial location. Then using the cumulant expansion-Lie operator theory it may be 
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to the order of the covariance time of operator A (exact second order). Also, in 
equation (2): 
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where AL is that portion of <A> which is made up of the linear combination of the first 
spatial derivatives and exp is the time-ordered exponential which is a Lie operator. 
Fundamentally, this operator displaces the location xt at time t to the location xt-s at 
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time t–s. Using the upscaling formula (2), the upscaled conservation equation for non-
reactive transport by unsteady flow within a heterogeneous aquifer at a spatial scale 
one step larger than the Darcy-scale may be obtained as (Kavvas & Karakas, 1996): 
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to exact second order. In equation (4): 
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Fig. 1 Comparison of the first spatial moments of the ensemble-averaged concentra-
tion field as determined from the upscaled transport equation, from Monte Carlo 
simulations, and from field data of the Borden Site (from Wood & Kavvas, 1999). 
Field data are shown by diamond or plus points. 
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Fig. 2 Second spatial moments of the ensemble-averaged concentration field as deter-
mined from the upscaled transport equation and from the Monte Carlo simulation, as 
compared to those from field data. The second moments calculated directly from the 
Borden aquifer data appear as circle or plus points (from Wood & Kavvas, 1999). 

 
 
 This theory was applied to Borden Aquifer field experimental data on solute 
transport within a heterogeneous aquifer with satisfactory results (Wood & Kavvas, 
1999). In Figs 1 and 2, some of these application results from Wood & Kavvas (1999) 
are given. Figure 1 compares the first spatial moments of the solute plume in the 
longitudinal (Ξ1) and transverse (Ξ2) directions from the field data, and those estimated 
from the above upscaled transport equation (4) as a special case of the upscaling 
formula equation (2). Similarly, Fig. 2 compares the second spatial moments of the 
solute plume in the longitudinal (Ξ11) and transverse (Ξ22) directions, as obtained from 
the field data and from the upscaling theory above. 
 Again, by utilizing the combined cumulant expansion-Lie operator theory, a 
general formula for the upscaling of any nonlinear hydrological conservation equation 
from point-scale to the next larger spatial scale was also developed recently, and is 
given in Kavvas (2003).  
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DISCUSSION 
 
In the world of upscaled hydrological conservation equations one may note the 
following features: (1) While the original point-scale conservation equations are 
Eulerian, the upscaled conservation equations are mixed Eulerian–Lagrangian. Hence, 
their solutions will require new computational approaches that can accommodate 
mixed Lagrangian–Eulerian frameworks. (2) While the parameters of the existing 
point-scale conservation equations are at point-scale, the parameters of the upscaled 
conservation equations are at the scale of the grid areas being modelled (e.g. areal 
median saturated hydraulic conductivity, areal variance of log hydraulic conductivity, 
areal covariance of flow velocity, etc.). Hence, new parameter estimation methodol-
ogies will be required for the estimation of these grid area-scale parameters. (3) The 
spatial heterogeneities due to topography, soils, vegetation, land use/land cover, 
geology are incorporated explicitly into the upscaled conservation equations by means 
of the newly emerging parameters on the areal variance/covariance of the point-scale 
parameters. Especially, the areal dispersion of the point-scale hydrological dynamics 
(due to heterogeneity in land conditions and atmospheric boundary conditions) is 
explicitly modelled in the upscaled equations. (4) The hydrological models which are 
based upon point-scale conservation equations with effective parameters may yield 
significantly incorrect predictions over highly heterogeneous ungauged basins due to 
the effect of hydrological nonlinearity. In such basins it may be necessary to utilize 
upscaled hydrological conservation equations with their upscaled parameters. (5) It is 
essential to establish a hydrological model intercomparison project by which existing 
models (point-scale or upscaled) are tested for their performance when they are 
provided no atmospheric/hydrological data over a large basin for predicting hydrolog-
ical processes at various spatial scales within that basin. 
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