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Abstract An analysis of snow cover measurement data in a number of 
physiographic regions and landscapes has shown that fields of snow cover 
characteristics exhibit statistical self-similarity property. This property is 
useful when, because of a sparse measurement network, the spatial variability 
of snow cover can be determined only for large enough basins. Small-scale 
variability of snow cover can be estimated by scaling of the spatial variance 
determined for a large basin. A physically-based distributed model of 
snowmelt runoff generation developed for the Kolyma River and the Sosna 
River basins has been used to estimate the sensitivity of snowmelt dynamics 
and flood hydrographs to scaling of maximum snow water equivalent 
variance. It was shown that this scaling allows improvement of the description 
of snowmelt dynamics both within small areas and over the entire river basin. 
The flood hydrographs appeared to be sensitive to scaling of snow water 
equivalent mainly for small river basins and at certain hydrometeorological 
conditions. 
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INTRODUCTION 
 
It was established long ago that the spatial variations of snow depths and snow water 
equivalents for a given area can be considered as random fields of the variables, the 
areal statistical distributions of which follow lognormal or gamma probability laws. 
However, these random fields may be strongly heterogeneous, and statistical 
parameters needed for the construction of probability distributions may vary in space 
and as a function of the area’s size. The number of measurement points needed for 
reasonable estimation of spatial variance or higher statistical moments is commonly 
sufficient only for areas which are significantly larger than the grid cells of numerical 
runoff models or, vice versa, only for a small part of these grid cells. Thus, it is 
necessary to assign the statistical parameters for domains without measurements or to 
transfer these parameters from the larger to smaller domains. 
 An opportunity for a solution of this problem is associated with investigating 
regularities in the stochastic spatial structure of snow characteristics and searching for 
relationships between variations of these characteristics for different spatial scales.  
 Significant experience in this field has been accumulated on the basis of the theory 
of random fields with homogeneous increments in meteorology (Gandin, 1963; Monin 
& Jaglom, 1967), and in geology resulting in development of geostatistics (Matheron, 
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1967). On the other hand, the theory of fractals can be successfully used to receive the 
relationships between statistical parameters of different spatial scales, as has been 
shown for random fields of elevations (Mark & Aronson, 1984), rainfall characteristics 
(Lovejoy & Mandelbrot, 1985), and soil constants (Burrough, 1983). Both these 
approaches, under the specific properties of random fields commonly called statistical 
self-similarity, enable us to transfer statistical parameters for one scale to statistical 
parameters for other scales using simple scaling transformation of the random variable. 
The objectives of this study are the following: (a) to verify the hypothesis of statistical 
self-similarity for spatial distribution of the snow water equivalent, (b) to use relation-
ships, following from this property, for estimation of the snow water equivalent 
statistical moments for ungauged or poorly gauged areas, and (c) to estimate the effect-
iveness of using these relationships in improving the modelling of snowmelt runoff 
generation. 
 According to Gupta & Waymire (1990), we shall call statistical self-similarity 
such a property of a given random variable S(x), when the probability distribution of 
S(x) within any cell Fk of an area F is the same as the distribution over the whole area 
F if a scaling transformation of this variable within Fk is made. Such a scaling trans-
formation occurs when the variable S(x) is multiplied by a factor rH, where r is a 
constant depending on the ratio of Fk to F and H is a constant depending on a measure 
of spatial correlation of S(x). In this case, the conditions of the equality of probability 
distributions of S(x) within the areas Fk and F can be presented as the following 
relation between the corresponding statistical moments E[Sk

n] and E[SF
n] of order n:  

E[Sk
n] = rnH E[SF

n] (1) 

 When the random field is heterogeneous but the increments I(h) = S(x + h) – S(x) 
are assumed to be homogeneous and isotropic, it is possible to construct the 
variograms: 

γ(h) = E[S(x + h) –S(x)]2 (2) 

If the variogram of the value of S(x) has the power structure: 

γ(h) = αh2H (3) 

where α and H are constants, then for the increments with steps of h and rh the 
following equality can be written: 

I(rh) = rH(I(h) (4) 

 Determining the statistical moments for both sides of the equation (4), we derive 
equation (1) and, consequently, the random variables whose variograms have the 
power structures are statistically self-similar. If H > 0.5, the increments of this process 
are positively correlated and large-scale variations prevail; if H < 0.5, the increments 
are negatively correlated and small-scale variations prevail. As a measure of 
irregularity of a random surface and correlation of the large-scale and small-scale 
variations, one can also use the fractal dimension:  

D = E + 1+ H (5) 

where E is the topological dimension.  
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 By averaging S(x) and the variances for two embedded circles or squares with the 
centre at a point Xo and with areas Fk and F, and taking into account (4), we obtain: 

mk – S0 = rH(mk – S0) (6)    
222 σ=σ F

H
k r  (7)     

where S0 = S(x0);  and  are the means and the variance of S(x) over the area Fk, 
respectively; and  are the means and the variance of S(x) over the area F 

respectively; 

km 2
kσ

Fm 2
Fσ

F
F

r k= . These relationships can be applied for scaling of statistical 

parameters with changing areas. 
 
 
VERIFICATION OF THE HYPOTHESIS OF STATISTICAL SELF-
SIMILARITY OF SNOW COVER 
 
The available information about snow cover distribution includes two forms of snow 
cover data: the point measurements along straight-line snow courses and snow cover 
data received on the basis of the point measurements and averaging the courses 
measurements. The snow courses are commonly chosen to represent the micro and 
mesoscale variability of snow cover for different types of landscape and relief. The 
required length of snow courses varies from 100 m to several km. To analyse the 
statistical structure of large-scale snow cover fields, it is necessary to have a sufficient 
number of snow courses inside the area under consideration. The spatial snow density 
variation is small in comparison with the snow depth, so the fields of the snow depth 
and the snow water equivalent have similar structure. Taking into account these 
peculiarities of snow cover measurements we have investigated the statistical structure 
of snow depth for the snow courses and snow water equivalents for large-scale areas.  
 Figure 1 shows the variograms and fractal dimensions of snow depth spatial 
variations obtained on the basis of the snow point measurements in the following  
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Fig. 1 Variograms of snow depth for scales from tens to hundreds metres: (a) Tien-
Shan region; (b) Alaska; (c) Valday region; (d) Oka River basin; (e) Don River basin; 
(f) Lower Volga region. 
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Fig. 2 Variograms of snow water equivalent for scales from ten to hundreds of km. 
 

regions: (1) Valday region (forest zone), (2) Don River basin (forest steppe zone),  
(3) Lower Volga region (steppe zone), (4) northern Alaska (tundra), (5) Tien-Shan 
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region (mountain terrain), and (6) Oka River basin. As can be seen from Fig. 1, we can 
consider the spatial variations of snow depth at chosen snow courses as fractional 
Brownian processes.  
 The spatial variograms and the fractal dimensions of the maximum before melting 
snow water equivalents for six physiographic regions are shown in Fig. 2. These 
physiographic regions are as follows: (1) the region of 48 000 km2 partially includes 
the drainage area of the North Dvina, Mesen, Pechora and Upper Volga (a plain relief 
with dominantly forest vegetation); (2) the upper and middle part of the Volga River 
basin (mainly a plain rugged relief with forest vegetation; the area of the region is 31000 
km2); (3) the region is situated in the Kama River basin and occupies 42 000 km2 (the 
upper part of the region is a mountainous area; the middle and lower part of the region 
is a hilly plain); (4) the region is located in the Don River basin and covers an area of 
21 000 km2.( rugged plain in the forest-steppe zone); (5) the region covers an area of 
34 000 km2 in the western part of the Ukraine (the significant portion of the region is 
the foothills of the Carpathian Mountains with the forest vegetation; the rest of the 
region is a forest-steppe zone); and (6) the upper part of the Kolyma River basin (the 
drainage area is 99 400 km2) is a mountainous area covered mostly by tundra and taiga 
vegetation.  
 As can be seen from Figs 1 and 2, all variograms in logarithmic coordinates are 
approximated quite well by linear functions and, consequently, the condition of the 
self-similarity (3) is satisfied. The calculated values of the fractal dimensions both for 
the snow courses in different landscapes, and for the physiographic regions, have 
relatively small differences. The values of H for all variograms are less than 0.5, and, 
thus, the spatial increments of the snow depth or the snow water equivalent appear to 
be relatively noisy and the short-range effects in their variations dominate (the sign of 
derivations from the mean values of these functions often alternates). These anti-
persistent properties of snow cover are also typical for the spatial distribution of rain-
fall (Gupta & Waymire, 1990), and topography (Mark & Aronson, 1984). However, 
regardless of the dominance of short-range effects, the correlation of increments can 
extend over arbitrarily large spatial scales. 
 
 
APPLICATION OF THE HYPOTHESIS OF STATISTICAL SELF-
SIMILARITY OF SNOW COVER  
 
In order to estimate the sensitivity of modelled snowmelt runoff to scaling of snow 
cover spatial variance, distributed runoff generation models developed for the Upper 
Kolyma River basin (Kuchment et al., 2000) and the Sosna River basin (Kuchment & 
Gelfan, 1996) were applied.  
 The first model is based on a finite-element schematization of the river basin and 
describes the following main processes of runoff generation in the permafrost regions: 
snow cover formation and snowmelt, thawing of the ground, evaporation, basin storage 
dynamics, overland, subsurface and channel flow. In the model of the Sosna River 
runoff generation, the basin was represented by rectangular strips located along the 
river channels and on which a plane-parallel overland flow occurs. The model 
describes snow cover formation and snowmelt, thawing and freezing of the ground, 
infiltration, evaporation, overland and channel flow.    
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Fig. 3 Observed (points) and calculated hydrographs of the Kolyma River (dashed line: the variance of 
the initial Smax depends on the size of subgrid areas; bold line: the variance of the initial Smax is assigned 
as the constant for the whole basin; thin line: the coefficient of variation is assigned as the constant for 
the whole basin). 
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Fig. 4 Calculated hydrographs for the Sosna River (dashed line: the variance of the 
initial Smax depends on the size of subgrid areas; solid line: the variance of the initial 
Smax is assigned as the constant for the whole basin; thin line). 

 
 
 The maximum snow water equivalent Smax before the start of snowmelt was 
assigned as the initial conditions for calculation of runoff hydrographs in both models. 
The values Smax were determined for each grid area with aid of the Thiessen method 
using the records at 20 snow measurements stations for the Kolyma River and at 30 
stations for the Sosna River. 
 It was assumed that the areal distribution of the initial value of Smax within each 
subgrid area satisfied a lognormal probability distribution. The mean value of Smax over 
the kth subgrid area (mk) was assigned to be equal to value of Smax measured at the 
closest snow station. The variance of Smax over the k subgrid area (σ2

k) was calculated 
according to (7).  
 Three sets of calculations were carried out: (a) the variance σ2

k was assumed equal 
to the measured one and constant for all subgrid areas; (b) the coefficient of variation 
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was equal to the value calculated over the whole basin and constant for all subgrid 
areas; and (c) the mean value and variance of Smax within the subgrid areas were 
determined from equations (6) and (7). The scaling of the variance of Smax has led to 
significant changes of the snowmelt dynamics. The decrease of subgrid variance 
reduces the portion of the subgrid area with large values of the snow water equivalent 
and the snowmelt completes earlier. For the Sosna River basin, the decrease in the 
snow cover variance caused by the transfer from the whole basin to the grid area led to 
a 3-day reduction of the snowmelt period. 
 Accounting for the spatial non-uniformity of snow cover has led to a 5-day 
prolongation of the snowmelt period and to some decrease in the maximum rate of 
outflow from the snow-pack. The decrease in the snow cover variance caused by the 
transfer from the whole basin to the grid area has led to a 3-day reduction of the 
snowmelt period. 
 Differences in flood hydrographs are less obvious because of smoothing due to the 
large lag times of channel flow (Figs 3 and 4 ). In most cases there is a perceptible 
increase of snowmelt peak discharges, when the size of area was taken into account in 
assigning σk. Such increases for the Kolyma basin reach 20% for 1974 and 30% for 1967.  
 Under some hydrometeorological conditions and for small river basins, this effect 
may lead to significant changes of the modelled hydrographs. At the same time, as can 
be seen from Fig. 3, in some cases in order to transfer from statistical parameters of the 
snow distributions for large areas to statistical parameters for small areas, it is a 
reasonable assumption that the coefficients of variation of these characteristics do not 
depend on the size of the area. 
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