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Abstract Regionalized estimates of mean annual flood in ungauged drainage 
basins are typically found by using multiple regression equations fitted to data 
from neighbouring gauging stations. Amongst the explanatory variables used 
in fitting such regressions, basin area is one of the most important, commonly 
showing close correlation with mean annual flood, the variable to be 
predicted. In regions of very low relief, however, determining the boundaries 
of drainage basins, whether from maps or on the ground, is not straight-
forward. Using data from tributaries of the River Uruguay in southern Brazil, 
this paper reports results of a simulation study which quantifies the magnitude 
of errors in estimates of mean annual flood, that result from errors in drainage 
basin area. 
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INTRODUCTION 
 
There is a frequent need to estimate the flow characteristics of rivers at sites where no 
flow records exist. Techniques of hydrological “regionalization” seek to obtain 
estimates of flow characteristics by using data from neighbouring drainage basins to 
establish relationships between flow characteristics and variables describing the 
geomorphology and climate. Multiple regression is commonly used for this purpose 
(Thomas & Benson, 1970; NERC, 1975). If Q denotes a flow characteristic derived 
from ni years of record at site i (I = 1, ..., N) for N sites on rivers within a region, a 
model is postulated of the form Q = γAαBβCδ.... where α, β, γ, δ... are parameters to be 
determined from flow records available at the N sites, and A, B, C... are the geomorph-
ological and climate characteristics measured or estimated for each of the N catchment 
areas. The model is then put into a form in which the parameters appear linearly by 
transforming to logarithms, giving a multiple regression model of the form: 

lnQ = β0 + β1 lnA + β2 lnB + β0 lnC + ... + ε                  (1) 

where the residuals are taken to be uncorrelated random variables with a probability 
distribution having zero mean and constant variance independent of i. Extensions to 
this simplified model have been developed by Stedinger & Tasker (1985, 1986) and 
Tasker & Stedinger (1989). Where the flow characteristic to be estimated at the 
ungauged site is the mean annual runoff volume V, or the annual peak discharge QT 
with return period T, catchment area, here denoted by A, is an extremely important 
predictor. If the corresponding relationships are denoted by: 
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QT = c1 Aθ                                                                                                        (2a) 

 Vm = c2 Aφ                                                                                                         (2b) 

then the empirical values of the scaling exponents θ, φ have been found to lie in the 
range 0.5 < θ < 1 and 0.6 < φ < 1 (Leopold et al., 1964; Benson, 1962, 1964; Alexander, 
1972). Benson (1962, 1964) found that the exponent θ tended to decrease with increas-
ing aridity (for example, θ = 0.85 for humid New England, whilst θ = 0.59 for semi-
arid Texas and New Mexico). Benson also found, and was later supported by Alexander 
(1972) using world-wide data, that θ actually decreased with increasing catchment 
area. Goodrich et al. (1997) recently examined peak runoff QT and annual water yield 
Vm over a range of catchment sizes on the Walnut Gulch watershed in Arizona, 
concluding that θ changed from 0.90 for small subcatchments to 0.55 for larger 
subcatchments, whilst φ varied from 0.97 to 0.82 over the same area ranges. Similarly, 
in a detailed regionalized analysis of mean annual peak discharge in Great Britain and 
Ireland, NERC (1975) found values of the scaling exponent θ extending up to 0.970. 
 It is of interest to consider why the scaling exponents are always less than unity in 
all the cases reported here, and what factors cause increased departures from this value. 
Intuition would suggest that Vm would be directly proportional to drainage basin area 
A, but this is not the case. If the linear regression model in (1) is correct (that is, if all 
explanatory variables have been included on the right-hand side, and all terms are 
linear), then estimates of their coefficients are unbiased estimates of their true values; 
however, if—as is invariably the case—the model is incorrect, estimates of the 
regression coefficients will be biased (Draper & Smith, 1981). However, there is no 
reason why the omission of explanatory variables, or incorrect model form on the 
right-hand side of (1), should result in values consistently less than unity, as is the case 
with the coefficient of lnA, and hence in values of the scaling exponents in (2a, 2b) 
which are also less than one. A partial explanation for the phenomenon may be as 
follows. To be explicit, denote the linearized form of (2a) by lnQ = β0 + β1 lnA + ε. 
Then ordinary regression theory assumes that that the independent or explanatory 
variable lnA is free from measurement error; but if this variable is subject to error, then 
the usual linear regression of β1 will be biased downwards. A simple example 
illustrates the point. Suppose that the flow variable Q is directly proportional to basin 
area A with constant of proportionality one, so that Q = A. Let A take the values 1, 
2...10, so that Q also has these values. Since the true values of Q will not be observed 
exactly but will be subject to errors that are assumed to be random and independent, 
introduce Normal errors N(0, 0.1) to the true Q values. So far, there are errors in the 
Qs, but not in the areas A. Now introduce errors of X% in each of the areas A = 1, ..., 
10, by: (a) tossing an unbiased coin; (b) if the result is heads, impose an error of + X% 
on the current value of A, otherwise impose an error of –X%. Now repeat the 
calculation 200 times, with the result shown in Table 1.  
 It is clear that the larger the measurement errors in A, the smaller is the mean value 

 of the 200 estimates of β1

_
b 1 obtained from the 200 simulated pairs of values (Q,A), 

and the larger the mean intercept  of the 200 regressions. Thus the effect of errors in 
the measurement of drainage area is to “flatten” the regression by making it more 
horizontal, and this confirms intuition: namely that large errors in A will tend to 
 

0

_
b
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Table 1 Means ,  of 200 estimates of regression coefficients β0
_
b 1

_
b 0, β1 (true values: β0 = 0, β1 = 1) with 

values A, Q simulated from A = 1...10, Q = A + ε, ε ~ N(0,0.1), and with each A-value disturbed by  
± X% with equal probability. 

X 0% 5% 10% 15% 20% 

0
_
b  0.0006 0.0429 0.1834 0.3654 0.6921 

1

_
b  1.0014 0.9904 0.9688 0.9341 0.8910 

 
 

depress the true relation between Q and A, reducing the proportion of variance in lnQ 
explained by the relationship with lnA. This may explain, in part, the results of Benson 
(1962, 1964), Alexander (1972) and Goodrich et al. (1997) cited above. The fact that 
the United Kingdom is a small and well-mapped country may also explain why the 
NERC Report (1975) found scaling exponents θ extending up to 0.970, not much less 
than one. However, in areas of very low relief covered by tall vegetation, which is the 
case over large parts of Brazil, identification of catchment boundaries is difficult 
whether from the use of maps, aerial photographs or satellite images, so the errors in 
estimating A may be considerable. 
 The question remains whether measurement errors implicit in the estimation of 
catchment areas are sufficient to explain in full the departures from unity for values of 
the scaling coefficients θ, φ given in the literature. This is the hypothesis explored in 
this paper, using data from a drainage basin in the south of Brazil. 
 
 
THE DATA 
 
The data used in the study were from 21 sub-catchments within the drainage basin of 
the Rio Ibicuí, which is in the southwestern part of the Brazilian State of Rio Grande 
do Sul, near the frontiers with Uruguay and Argentina, as shown in Fig. 1. The Ibicuí 
is the main left-bank tributary of the River Uruguay, and for much of its length flows 
in the east–west direction along the 386 km from its source to its junction with the 
River Uruguay. Its principal tributaries are the Rivers Santa Maria, Jaguarí, Ibirapuitã, 
Toropi, Itú, Ibirocá and Ibicui-Mirim, giving a total drainage area of roughly  
47 740 km2. 
 
 
METHOD 
 
Table 2 shows the number of years of record n, mean annual mean daily flow Q, and 
the drainage area for each of 21 subcatchments within the drainage basin of the Rio 
Ibicuí. For each subcatchment, the value of Q was obtained as follows. In each day, 
water-level was recorded at 07:00 and 17:00 hours, and a rating curve was used to 
estimate the corresponding discharges. The two discharges so estimated were averaged 
to give a mean daily flow, and the maximum of the mean daily flows was selected 
from each of the n years of record. The value Q shown in Table 2 is the mean of these 
n values.  



R. T. Clarke & L. C. Brusa 
 
 

246 

 
Fig. 1 Location of the State of Rio Grande do Sul (RS) within Brazil (left figure): 
position of R. Ibicuí and its tributaries within RS (right figure).  

 
 

Table 2 Numbers of years of record (n), mean annual peak discharge (Q), and drainage areas for 21 
subcatchments within the Rio Ibicui drainage basin. 

n 21 53 28 37 25 29 30 
Q 451.9 862.3 646.1 1219.5 155.6 798.4 1681.4 
Area 1635 2783 3310 5679 2101 6005 12077 
        
n 39 55 34 10 31 32 19 
Q 371.9 822.7 490.6 304.4 1019.3 2520.2 70.6 
Area 1826 2296 933 1345 4578 27771 376 
        
n 32 16 49 15 21 56 40 
Q 3094.7 2539.4 415.5 474.4 207.2 991.1 4063.7 
Area 29321 31008 2562 3194 1163 5942 42498 
 
 
 A weighted regression analysis of the data given in Table 2 showed a highly 
significant relationship between lnQ and ln Area; the regression on ln Area accounted 
for 82.6% of the variation in lnQ, the fitted regression being lnQ = 0.701 + 0.713 ln Area. 
The standard errors of  were ±0.617 and ±0.0729 respectively. Thus, although 
the slope of the weighted regression was significantly less than one, there was no 
evidence that the regression intercept was significantly greater than zero, such as 
would occur if the regression had been flattened by errors in determining drainage 
areas. As a next step, values of the variable A (catchment area) were perturbed, either 
positively or negatively with equal probability, by adding or subtracting 5% of their 
values, and after each such perturbation of the 21 values A, the weighted regression of 

10 β̂,β̂
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lnQ on the perturbed ln A was recalculated. This calculation was repeated 500 times. 
The same procedure was followed for perturbations of 10%, 15% and 20%, with the 
results shown in Table 3 (although errors as large as 15% or 20% in the estimation of 
catchment area are improbable). 
 Table 3 shows that the same features of Table 1 are broadly reproduced when a 
similar procedure is used with the real data of Table 2. However, even when errors of 

±10% are introduced in the catchment areas A, the effect on the regression slope 1

_
b  is 

rather small: namely a reduction from 0.713 to 0.709. In the case of the regression 

intercept, the effect of introducing errors of ±10% in the areas A is larger, with 
increased from 0.701 to 0.745. However the real point at issue is not how errors in A 
affect the regression slope and intercept, but how such errors would affect the 
estimates of Q, the annual maximum mean daily discharge estimated from the 
regionalized equation lnQ = lnA. To explore this point, a set of hypothetical 
areas A = 500, 1000, 5000, 10000, 20000 and 40000 km

0

_
b  

10 β̂+β̂
2 was taken, covering approx-

imately the range of A values given in Table 2.  
 
Table 3 Means ,  of 500 estimates of regression coefficients β0

_
b 1

_
b 0, β1 after perturbation of values of 

Area shown in Table 2, by ±X% with equal probability and X% =5, 10, 15 and 20%. 

X: 0% 5% 10% 15% 20% 

0
_
b  0.701 0.710 0.745 0.786 0.866 

1

_
b  0.713 0.712 0.709 0.704 0.697 

 
 
 Table 4 shows the estimated values of Q obtained: (a) from the regression of lnQ 
on lnA, before errors in A were introduced, and (b) from the regression of lnQ on lnA, 
obtained as the mean of 500 simulated regressions within each of which areas A has 
been perturbed by 10%. Averaged over the 500 simulations, the changes to Q resulting 
from the 10% perturbations are small. However the smallness of this average 
difference obscures the variation between the predicted Qs given by individual 
simulations; the extent of this variation is given in the last line of Table 4 which shows 
an approximate interval that included 95% of the predicted Qs. Even the most extreme 
of the predicted Qs do not differ greatly from the value of Q obtained without any 
perturbation of the areas A. 
 
 
Table 4 Estimates of Q obtained (a) from the regression of lnQ on lnA, before errors in A were intro-
duced, and (b) from the regression of lnQ on lnA, obtained as the mean of 500 simulated regressions 
within each of which areas A has been perturbed by 10%. The last line shows an approximate range that 
included 95% of 500 Qs, obtained by perturbing A in the way described. 

A (1000 km 2): 0.5 1   5 10 20 40 
(a) 170 278 876 1436 2355 3860 
(b) 173 282 883 1444 2360 3858 
±2.SD ±12 ±16 ±28 ±58 ±130 ±280 
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 The above analysis assumed that the estimated drainage areas of the 21 sub-basins 
are subject to errors that may be positive or negative with value ±X%, with equal 
probability. However, if all areas are subject to X% errors which are either all positive 
or all negative, the effects of such errors on estimates Q are greater, as shown in Table 5. 
In this Table, Column (1) is Q estimated from regionalization, assuming no errors in 
drainage area A; Column (2) gives adjusted estimates Q when true drainage areas are 
all consistently overestimated by 10% (obtained by setting drainage areas A equal to 
90% of their given values); Column (3) gives adjusted estimates Q when true drainage 
areas are all consistently underestimated by 10% (obtained by setting drainage areas A 
equal to 110% of their given values). Even in this case, however, the magnitude of the 
adjustments to estimated Q are of the order of 8% or less. 
 
 
Table 5 Effects on estimation of mean annual flood Q (m3 s-1) of errors in drainage basin area A (km2). 
For explanation of columns (1), (2), (3), see text. 

       A     (1)   (2)    (3) 
    500   169   183   158 
  1000   278   300   260 
  5000   876   944   818 
10000 1436 1548 1341 
20000 2354 2537 2199 
40000 3859 4160 3605 
 
 
CONCLUSION 
 
Based on the evidence of the simulations described, there is no evidence from the 
Ibicui data that errors in determining catchment area A greatly affect estimates of Q 
obtained by regionalization of data from 21 sub-basins. Whilst errors in catchment area 
A influence the slope and intercept of the regression equation lnQ = β0 + β1 lnA + ε by 
depressing the slope and increasing the intercept, the effect is relatively minor over the 
range of areas for which the regionalized equation is likely to be used. 
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