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Abstract River runoff phenomena reflect many complex interactions between 
diverse basin factors, as well as meteorological and climatic fluctuations that 
strongly modify the precipitation input. Therefore river runoff prediction and 
forecasting remains a rather tricky issue in hydrology. The question is even 
more puzzling for the areas where no actual flow measurements are available. 
Present communication concretely demonstrates how the multifractals help to 
overcome some present difficulties in modelling, predicting and forecasting 
river runoffs.  
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INTRODUCTION 
 
To ensure valuable results from multifractal analysis, we used about three million river 
runoff measurements at very different locations all over the world. The time-scale of 
these monthly data varies for different stations from several years to several centuries.  
 For basins ranging from 1 km2 to more than 10 × 106 km2, we found that spatial 
variability of the discharge is dominated by the spatial variability of the corresponding 
drainage areas. This result would appear trivial, but it is much more than a single 
correlation. Not only are river discharges and drainage areas multifractal over the full 
range of scales, but also they have the same index of multifractality. We present some 
consequences of these results, which are well beyond the scope of earlier fractal drainage 
area studies, e.g. the power-law of the probability distribution tail for the specific 
discharges.  
 Combining these new results with our earlier results on multifractal time 
variability, we address the question of space–time multifractal runoff analysis and 
modelling. The latter opens a way to multifractal predictions in ungauged basins.  
 
 
DATA DESCRIPTION 
 
To establish the results of multifractal analysis and modelling, we used the second 
version of a web-based, hydrographic data network for the Arctic Region (R-ArcticNET 
v2.0). This is the comprehensive monthly river discharge database for the entire pan-
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Arctic drainage system. The pan-Arctic drainage region represents a land area of more 
than 20 × 106 km2 that is defined as all the terrestrial land area draining into the Arctic 
Ocean as well as the drainage regions of the Hudson Bay, James Bay and the Northern 
Bering Strait, which includes the Yukon and Anadyr Rivers. For the total of 3713 
gauges that compose the R-ArcticNET database, the size of drainage areas ranges from 
1 km2 to more than 106 km2. The number of gauges varies for each of the 11 hydro-
logical zones of the pan-Arctic drainage region: Anadyr and Kolyma, 81; Lena, 199; 
Mackenzie, 500; Nelson, 1319; North European Russia, 319; Northwest Hudson Bay, 
99; Ob, 603; Scandinavia, 15; South and East Hudson Bay, 183; Yenisei, 299; Yukon, 
96 gauges. The source of the Canadian data was HYDAT (Environment Canada). 
Geographical location (as longitude/latitude coordinates) of the entire R-ArcticNET 
database and the corresponding distribution of drainage areas are presented in Fig. 1. 
This database contains monthly discharges from prior to 1900 (for four Canadian and 
five Russian gauges) until the early 1990s. The length of record for individual gauges 
is extremely variable and the majority of the data occurs between 1960 and 1990. 
Figure 2 displays not only a typical example of the intermittent character of the 
discharge time records, but also emphasizes the fact that the pan-Arctic drainage 
region rivers are completely icebound over the winter–spring period and that for most 
of them, the largest discharge input is due to snowmelt phenomena. 
 
 
SHORT RECAPITULATION ON MULTIFRACTALS  
 
Multifractals constitute a very convenient framework within which to analyse and 
simulate intermittent fields. In general, a multifractal field is obtained by a cascade 
process, whose paradigm can be traced back to the famous poem of Richardson (1922). 
An elementary process is repeated scale by scale, randomly transmitting a fraction of a 
given flux (e.g. energy flux for fluid turbulence) from a parent structure to its children  
 
 

 
(a) 

 
(b) 

Fig. 1 Network of discharge gauges of the entire R-ArcticNET database in 
longitude/latitude coordinates. Colours of circles indicate the size of drainage areas in 
km2. 
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Fig. 2 16-year time series of elementary discharges at different time resolutions:  
1 month, 3 months, 6 months, 1 year and 2 years (from top to bottom). 

 
 
structures. In the simplest case, the scale ratio  ( L  is the external scale of the 
cascade,    the scale of observation) takes discrete values:  (  is the scale ratio 
for the discrete elementary step of the cascade, usually ). The resulting flux, 

l/=λ L
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distributed (i.i.d.) random variables, (e.g. Monin & Yaglom, 1975; Schertzer et al., 
1997). As λ → , the flux  is no longer a point-wise function but a multi-singular 
measure. It means that the non-trivial limit 

iμ
∞ λF

F ≡ F∞ of the flux has values defined by 
any arbitrary small neighbourhood of a point (x), but not by this precise point. So, this 
flux depends on the scale of the point neighbourhood. Usually, the flux over a given 
set should be conserved at all scales (e.g. its ensemble average should be strictly scale 
invariant in the case of a “canonical conservation”).   
 The extreme spikes or the singularity of such flux may be defined in terms of a 
probability distribution by the order of singularity, γ  > 0: 

)γ(γ
λ λ¡Ö)λ¡ÝPr( cF  (1) 

where  is the co-dimension function. The nonlinear behaviour of this function 
corresponds to the fact that high intensity events are less frequent than low intensity 
events, and therefore the most intense regions occupy a smaller fraction of the 
probability space, which means they have a larger co-dimension.  

)γ(c

 Therefore, a multifractal field corresponds to an infinite hierarchy of fractal sets 
and a definition of the co-dimension function in general requires an infinite number of 
parameters. Hence, let us focus particularly on the possibility of having so-called 
universal multifractals (Schertzer & Lovejoy, 1987). The very general idea of 
universality is that interactions between rather similar processes may lead them to 
converge to some attracting process. This fact has enormous consequences: only very 
few relevant parameters may define a stochastic process, whereas it could result from 
very complex interactions a priori requiring numerous parameters. It has been shown 
that by adding more and more intermediate levels in cascades or by multiplying  i.i.d. 
cascades, one may reach a universal multifractal process. 
 
 
PRINCIPALS OF THE UNIVERSAL MULTIFRACTAL ANALYSIS 
 
For the universal multifractals, only three parameters H, α and  are of fundamental 
importance. The first parameter indicates how the experimental data differ from a 
conservative flux. The latter could be directly modelled with the help of a multipli-
cative cascade. Fourier analysis is rather convenient to get a rough estimate of this 
parameter: the spectral slope  = 2H + 1 gives an estimate of H < 1/2 (Fig. 3). We 
may then apply the double trace moments technique (DTM; Lavallée et al., 1992) 
directly to the river discharge data to obtain estimates of  and . Otherwise, for 
accurate parameter estimates, the original data must be first passed through a filter that 
weights their Fourier components by , with k being a wave number. 

1C

β

α 1C

Hk
 The main idea of DTM is to compute the ηth power of the original data (at their 
highest resolution) and to degrade this field at smaller and smaller resolutionλ. Then 
one may study the scaling behaviour of the statistical moments of order q of the 
resulting field :  )η(

λε

( )( ) ( )η
λ λε ,qKqn >∝<  (2) 
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Fig. 3 Fifty-year spectra of monthly discharges representing all hydrological zones of 
the R-ArcticNET database which gave the first indication of the possible scaling 
behaviour of time series.  

 

 
Fig. 4 Examples of a perfect scaling behaviour of the DTM curves for two-
dimensional gauge networks analysis: Northwest Hudson Bay (blue squares) with  
32 × 32 grid for subset of points from Fig. 1(a) (99 gauges) and Ob (red circles) with 
64 × 64 grid for subset of points from Fig. 1(b) (603 gauges). Each slope gives an 
estimate of corresponding Knet(q) for different q. 

 
 
 For universal multifractals, the scaling function of the double trace moments, 

, has a simple relation with the single moment scaling function (K(q) ≡ K(q,1)):  )η,(qK

)(η=)η,( α qKqK  (3) 

 Equations (2) and (3) yield a convenient method for empirically defining the Lévy 
parameter α (α = 2 corresponds to the Gaussian case). Then the parameter , which 
corresponds to the co-dimension of the mean singularity, may be computed according 
to the following equation for the universal multifractal scaling function (Schertzer & 
Lovejoy, 1987):  

1C

)1α/()(=+)( α
1 qqCHqqK  (4) 
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Spatial data analysis: multifractality of discharges and corresponding drainage areas  
 
The main difficulty of spatial data analysis can be seen in Fig. 1: the gauges have a 
notably inhomogeneous distribution in space. Therefore, it is impossible to attribute to 
these gauges a regular full-field two-dimensional grid of a sufficiently high resolution 

λ×λ . The “sufficiently high” would be a resolution that allows study of the scaling 
behaviour of two-dimensional fields according to the DTM procedure described above. 
Therefore, in order to reach such resolution, we may accept that some of the grid cells 
will not include any gauges. But in order not to influence the DTM results by the 
artificial, non-measured zero values of a given measured field, one may consider that 
this field, ϕλ, results from the intersection of a full two-dimensional multifractal field, 
ελ, with a network of gauges, ρλ. This network of gauges is constructed on the 
principal that any grid cell with at least one gauge inside will have the value of 1, 
whereas the cells with no gauges inside will have the value of 0. The main con-
sequence of such construction is that any ηth power of the network data would be 
identical to their 1st power: . Since two fields ( and ) are statistically 
independent, using the DTM procedure with the help of equation (2) one may obtain: 

)1(
λ

)η(
λ ρ=ρ λε λρ

)(),(),()()()( )1()()( qKqKqK netmes
qqq +=⇒>><>=<< ηηρε λ

η
λ

η
λ  (5) 

Therefore, the true universal multifractal scaling function of the double trace moments, 
K(q,η), would correspond to a difference between the scaling function of a given 
measured field and the scaling function of the network of gauges: 

. Figure 5 demonstrates the importance of 
such network correction for proper estimation of multifractal parameters and estab-
lishes a direct proof of the multifractal behaviour of the spatial distributions of  
 

)()η,(=)(η=)η,( α qKqKqKqK netmes

 

 
Fig. 5 Example of a log–log plot of empirical scaling function K(q,η) versus 
η−moments for (from top to bottom) q = 2.0, 1.5 and 0.8 for drainage area 
measurements without spatial network correction (black crosses) and with network 
correction (red dotes). The straight lines indicate two slopes that correspond to α = 
0.67 before correction and α = 1.41 after the network correction. For each q, the 
intersection of such curves with the axis logη = 0 gives the corresponding logk(q). 
The universal multifractal expression for K(q) was then used to compute C1 = 0.56 
with corrected α . 
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Fig. 6 A log–log plot of empirical scaling functions K(q,η) versus η−moments for q = 
1.5 from Fig. 5 in comparison with similar curves for spatial monthly discharge 
distribution (sampled during the year 1985): without spatial network correction (green 
triangles) and with network correction (blue circles). It corresponds to network 
corrected parameters α = 1.28 and C1 = 0.8. 

 

 
Fig. 7 Empirical (spatial analysis) scaling moment function K(q) of monthly 
discharges (red crosses) compared with a sum (blue open dots) of empirical (space 
analysis) scaling moment function Kda(q) of drainage areas (violet line) and of specific 
discharges, Ksd(q) (green line). 

 

 
Fig. 8 The same curves as in Fig. 7 but with higher statistical moments. Empirical 
(spatial analysis) scaling moment function K(q) of monthly discharges (red line) 
becomes distinct from the sum of two other scaling functions only at a statistical 
moment order of about 25. 
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monthly river discharges and of their drainage areas. To the authors’ knowledge, this is 
the first time that the multifractality of drainage areas has been considered; it is also 
the first time that the multifractal analysis of river discharges was fulfilled in the 
spatial domain. Not only are discharges and drainage areas multifractal over the full 
range of scales but they also have rather similar indexes of multifractality (Fig. 6). 
These results are well beyond the scope of earlier fractal drainage area studies. Further-
more, multifractal space analysis has demonstrated (see Figs 7 and 8) that the sum of 
the empirical scaling moment function of drainage areas, Kda(q), and of specific 
discharges, Ksd(q), may be well approximated by an empirical estimate of the scaling 
moment function of monthly discharges up to a rather high order of statistical moments. 
 
 
Time series analysis and modelling: S-shaped DTM curves and seasonal 
periodicity  
 
Monthly discharge data systematically yield non-straight lines for DTM curves, i.e. 

 versus , instead of the expected straight lines corresponding to 
equation (2); an example is displayed in Fig. 9. This important fact was overlooked by 
Labat et al. (2002), Pandey et al. (1998) and Tessier et al. (1996), whereas it could be 
understood as a break of scaling. We will demonstrate that it corresponds to the 
seasonal periodicity, whose importance for river runoff phenomena in Russia has 
already been emphasized by Tchiguirinskaia et al. (2002), and calls for some 
generalization of the cascade processes. Indeed, the latter generally assume time 
translation invariance, which is incompatible with periodicity. Figure 10 displays 
perfect multiscaling behaviour for the range of scales selected from Fig. 9. On this 
range of scales we estimated the multifractal parameters as α = 1.56 ± 0.3 and C1 = 
0.28 ± 0.08, which may be used as input parameters for the time series simulation by a 
cascade process. The question we discuss below is how to introduce the seasonal 
periodicity for the synthetic discharges. 

)εlog( )η(
λ )λlog(

 Another look at Fig. 2, which can be considered as a fragment of an inverted 
cascade process, helps us to understand how to introduce seasonal periodicity into a 
multiplicative cascade. First we can develop the usual cascade process down to the 
year scale. Then, on the next level of this cascade (i.e. a scale of six months) we need 
to “re-order” random multipliers in such way that among the two next random 
variables the largest one will be used first. So, the random multiplier creating the 
spring–summer singularity will be larger than the one that creates the autumn–winter 
singularity. It is important to note that such re-ordering will not modify the essential 
statistics, but breaks the time translation invariance cascade. If this re-ordering process 
is repeated for the next levels of the cascade process, then it will result in stronger 
periodicity. Once the cascade has been developed to a sufficiently small scale, one can 
upscale the resulting multifractal field up to the scale of interest, e.g. up to the month 
scale. Summation over many realizations of such multifractal fields could be 
interpreted as summing over the various basin contributions and corresponds to a 
simplified multifractal runoff model. Figure 11 illustrates a multifractal discharge 
yielded by this model. The “synthetic” multifractal discharge has both important 
properties: a visual seasonal periodicity and nonlinear DTM curves. 
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Fig. 9 Example of a log–log plot of the DTM as a function of the time scale ratio λ for 
q = 1.5 and η = 1. 

 

 
Fig. 10 A log–log plot of the DTM (average over 3321 gauges for year 1984–1985) as 
a function of the time scale ratio λ (from 1 month to 1 year) for q = 1.5 and different 
values of η. The straight lines demonstrate scale invariance for moments of monthly 
discharges and further lead to estimate of α = 1.56 ± 0.3 and C1 = 0.28 ± 0.08. 

 

 
Fig. 11 Synthetic multifractal discharge time series exhibiting seasonal periodicity. 

 
 
DISCUSSION AND POTENTIAL 
 
The extreme variability over a wide range of scales suggested the potential of a multi-
fractal analysis of river discharges in both the space and time domains, and of drainage 
areas and specific discharges in the space domain. Not only are river discharges and 
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drainage areas multifractal over the full range of scales but also they have the same 
index of multifractality: α = 1.35 ± 0.2. This value is comparable to α = 1.56 ± 0.3 that 
we obtained for the discharge time series analysis. Furthermore, we have demonstrated 
that a sum of the universal multifractal scaling function of drainage areas and of 
specific discharges may be well approximated by an empirical estimate of the scaling 
moment function of monthly discharges up to a rather high order of statistical 
moments. One important consequence of these results, which go well beyond the scope 
of earlier fractal drainage area studies, is presented in Fig. 12: the power-law of the 
probability distribution tail for the specific discharge distributions. This figure 
demonstrates that all this data have a unique parameter qD = 6 for the probability fall-
off. It corresponds to an order of divergence of statistical moments in the universal 
multifractal framework (Hubert et al., 2001).  
 

 
Fig. 12 Probability that monthly specific discharges exceed a given threshold. Log–
log plot for space distributions in all the hydrological zones displayed in Fig. 1(b) 
(Anadyr and Kolyma; Lena; North European Russia and part of Scandinavia; Ob; 
Yenisei). For all these zones, note the tendency for the probability tail slope to get 
close to a value qD = 6. 

 
 
 We have argued that both the extreme variability over a wide range of space–time 
scales and seasonal periodicity are important features of river runoff. We have 
presented a generalization of the cascade processes in order to include them both: 
singularities are re-ordered in order such that the strongest ones occur during the 
season of strongest events. We showed that the corresponding model reproduces the 
main properties of the monthly discharge DTM curves thus giving a rationale to the 
latter. This is important for data analysis, since not only does it prevent misinter-
pretation of seasonal periodicity as a scale break, but also yields better estimates of the 
underlying universal multifractal exponents.  
 The absence of a scale break implies that the small-scale activity may introduce 
singular statistical behaviour in upscale observations, i.e. power-law fall-off of the 
probability distribution. The latter has highly significant consequences for the 
estimation of the natural variability, which is a preliminary requirement for any global 
change assessment, as well as for estimating hydrological risk for land-use planning or 
water structure design.  
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