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ABSTRACT The extremes of river bed level fluctuations 
are controlled by erosion-accumulation processes which 
are closely related to flow variations. Because of 
problems in developing a physically-based model of such 
fluctuations it is useful to consider them as a random 
process and to develop probabilistic models for 
prediction. Data obtained for a number of flow gauging 
stations on the River Vistula have been used to develop 
long term records of bed level fluctuations. These 
fluctuations have been described using a simple 
probabilistic model with a linear trend component and a 
normal random deviation component. This model has been 
fitted successfully to records from five gauging stations 
on the Vistula and permits prediction of bed level 
variations up to the year 2020.

INTRODUCTION

The extremes of river bed level fluctuations are controlled by 
erosion-accumulation processes, which in turn are closely related to 
flow variations. Since the chain of causes determining river runoff 
in time are unknown and we do not know exactly the relationships 
between flow fluctuations and river bed level fluctuations, it is 
useful to consider the fluctuations of bed levels through time as a 
random process. Under such circumstances the only satisfactory 
solution to the prediction problem is its presentation in a 
probabilistic form. Since the prediction involves extreme values, 
it is appropriate to present the prediction in the form of a 
probability exceedance function. It must be recognized that river 
bottom and also water level fluctuations make the random process 
non-stationary. Research has shown that the natural erosion activity 
of rivers may be considerably accelerated by river regulation and 
channel dredging and quite frequently causes the regular lowering of 
the river bed and the water levels. Thus the mean value of the 
process is time dependent and the non-stationary character of the 
process results.

The problem of prediction may be therefore defined as the problem 
of function identification

G(x,t) = p(x X)|t (1)

This is a function defining the relationship between the probability 
of exceedance of variable X (height of river bed) and time t.

For solution of the problem one should firstly define variable X 
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and develop a means of empirical estimation; secondly, determine the 
analytical shape of function G(x,t); and thirdly, estimate the 
parameters of the function G(x,t) and verify the compatibility of 
the mathematical model with empirical data.

EMPIRICAL ESTIMATION OF RIVER BED COORDINATES

Establishment of the probability of exceedance function requires a 
long observational series of the investigated variable. The only 
available measured data providing information on fluctuations in 
river bed levels are the results of soundings carried out at gauging 
station cross sections during flow measurements. Knowledge of the 
water level on the day of measurement and of the height of the zero 
gauge datum allows the height of the bed at the points of individual 
soundings to be calculated. A useful reference value for this 
purpose is the mean bottom height at the flow equal to a medium 
drought (SNQL) in the summer half year period.

Estimation of bed levels defined in this way necessitates the 
following simple but laborious procedure; firstly, plotting of the 
channel cross section, secondly, plotting on the diagram the water 
level corresponding to flow SNQL, and thirdly, calculating the mean 
height of the wetted bottom cross section confined by level SNQL 
(Branski, 1978).

From the above calculations we can obtain a sequence of 
estimates of the bottom heights equal in number to the number of 
flow measurements taken. This sequence clearly does not include 
estimates of the annual extreme levels and this must affect the 
interpretation of the results.

MATHEMATICAL MODEL

Since their appearance in the work of Box & Jenkins (1970) ARIMA 
models have been widely applied as a general model of a non- 
stationary random process. However, the general procedure of 
identification,estimation and verification of an ARIMA model 
suggested by Box & Jenkins could not be applied in this case, mainly 
due to the variable timing of the process observation results. We 
would suggest, therefore, the following simple model, which may be 
considered as a special case of the ARIMA model:

x(t) = a + bt + (t) (2)

where: x(t) = random variable dependent on time, t (stochastic 
process), a and b = parameters, 5(t) = stationary, normal random 
process with a mean value Ç(t) = 0 and standard deviation Oç.

Estimation of the three parameters a, b and Oç provides the 
solution to the prediction problem, since it allows calculation for 
a given optional time of exceedance, of the prediction T and 
probability pf of the value x(T,p), i.e. the value above which the 
probability of process implementation is equal to p:

x(T,p) =. x(Lq) + bt + Jç tp (3)
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where x(tQ) = mean value of process at the selected moment tg, which 
may be recorded as x(tQ) = a + btg, t = quantile of random variable 
of a standard normal distribution N(O,1) and probability of 
exceedance p.

Equation (3) is acceptable only when the period of exceedance of 
the prediction T is longer than the ergodic period of the process, 
Ç(t). The research has revealed that the above requirement is met 
if T > 5 years, which is practically always the case when the 
problem of long term prediction is taken into account.

The proposed model (2) is based on the following assumptions:
(a) the process x(t) is a normal process;
(b) the process x(t) is non-stationary;
(c) the mean value of the process x(t) is a linear function of 

time and a linear trend is developed in the process.
The above assumptions make it possible to represent the process 

in the form of two components: firstly, a linear function of time 
describing the relationship between the mean value of the process 
and time (a + bt) and secondly, a stationary normal random process 
with a zero mean value Ç(t).

From the prediction viewpoint, the most important assumption 
concerns the occurrence of a linear trend in the investigated 
processes. Aside from the problem of verifying this assumption by 
statistical methods, the assumption is introduced for practical 
reasons. Two approaches to long term prediction of the mean value 
of a fluctuating process are possible. The first involves 
determining the factors controlling such variations, and using in 
the prediction the appropriate correlation or functional 
relationships, and the second involves pure extrapolation in time 
of the regularity found in the historical operation of the process. 
The first of these approaches seems to be eliminated, since for the 
five investigated profiles it was not possible to elucidate the 
factors controlling the observed trends. But analysis of the 60 
years of information concerning mean bed level (and water level) 
fluctuation processes has permitted detection of persisting constant 
tendencies.

ESTIMATION OF PARAMETERS AND VERIFICATION OF THE MATHEMATICAL MODEL

In order to apply formula (3) it is essential to know the mean value 
of the process i.e. the height of the bed at the initial point of 
prediction development (xt0), the coefficient of the linear trend 
(b), and the standard deviation of the process from the mean value 
(Oç). of key significance for prediction is coefficient b. It may 
be determined jointly with parameter a using equation (2) by the 
method of least squares applied to the observed series of channel bed 
levels. Due to a normal distribution of deviations from the mean, 
estimates obtained by means of least squares distinguish the minimum 
fluctuation variation.

The research undertaken has revealed that the coefficient of 
linear trend (b) is identical to that obtained from analysis of the 
water level series corresponding to SNQL. The trend line for the 
SNQL water levels is displaced parallel to the same line for the 
bed levels, and is separated from it by the mean value of the 
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difference between the synchronous points representing both values. 
After the trend line equation is established we may calculate the 
last parameter of the model as the mean of the squares of the 
difference between the heights (ordinates) of the trend lines and 
the heights (ordinates) of the bed level or water level series.

When the parameters have been estimated one must verify the model 
by checking whether the basic assumptions are in agreement with the 
empirical data. The presented method cannot be applied if the 
following conditions are not satisfied.

(a) Process Ç i.e. the series related to the successive 
deviations from the trend line must represent a normal stationary 
random process.

(b) The ordinates of process Ç must be independent. 
Condition (a) simultaneously reflects the existence of a linear 
trend, since if a nonlinear trend or cyclic component existed, the 
process Ç would be nonstationary.

For verification, the regularity of the variable Ç distribution 
was tested using the Kolmogorov test, autocorrelation over.a 
distance in time exceeding five years was investigated using the 
Wald Wolfowitz test, and the similarity of variable Ç distributions 
in the first and second half of the investigation period which was 
also evaluated using the Wald Wolfowitz test may be considered as a 
substitute for a full study of the process stationärity. The theory 
and principles for these tests were taken from Fisz (1958).

Data from five water gauge profiles were analysed and were found 
to conform to the conditions outlined above at the 0.01 level of 
confidence. However, due to the restricted and simplified 
character of the tests and the small number of cases investigated 
the problem of model (2) adequacy should be considered as requiring 
further research.

IMPLEMENTATION OF THE MODEL

Prediction calculations were made using the following formula:

d(t)p = (a + bt) + RD + SRD tp (4)

where (a + bt) = equation of the trend line, in which t denotes 
number of years from the beginning of the observational period, 
a = mean equalized height of water level SNQL in year t =0, b = 
directional coefficient of the trend line equation, RD = mean of the 
differences between the height of the trend line and means of the 
bed levels within the SNQL channel defined from flow measurements 
taken in the observation period, or in other words the long term 
mean depth in the channel SNQL, SRD = standard deviation; tp = 
quantile of standard normal distribution for the probability of 
exceedance p.

Using formula (4) predictions of the bottom levels in five gauge 
profiles on the middle Vistula River were developed. In defining 
parameters for formula (4) the work was based on a 60 year series of 
water level observations and flow measurements (1919-1978).

Table 1 presents a compilation of the parameters of the prediction 
equations developed for the five profiles, and in Fig.l the
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TABLE 1 Parameters of the mathematical model for 
prediction of extreme variations in bed level

Gauge 
profile

a
(m a.m.s.l.)

b RD
(m)

SrD
(m)

Zawichost 131.44 -0.01003 -1.5000 0.6536
Annopol 128.37 +0.00015 -1.0663 0.3358
Pulawy 110.92 -0.00972 -1.2758 0.3760
Debl in 105.82 -0.00600 -1.9700 0.5767
Warsawawa 74.21 -0.03110 -1.5263 0.4338

NOTE: (a) in the equation for trend h(t) = a + bt the
value t has been calculated from the year beginning
1 January 1919. (b) Heights a.m.s.l. were defined in
relation to the stipulated reference level.

prediction of maximum and minimum level of the river bed in one of 
the profiles up to 2020 is presented graphically.

CONCLUSIONS

(a) Analysis of SNQL water level fluctuations and bed led 
fluctuations has shown that these are non-stationary processes and 
that AR (autoregression) of MA (moving average) models cannot be used 
for their description.

(b) An IMA (integrated moving average) model may be more useful 
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since these models may be used for description of a wide range of 
non-stationary processes.

(c) The application of an ARIMA model is extremely laborious. 
It necessitates the use of a computer and the availability of the 
necessary programs needed to undertaken the successive stages of 
analysis.

(d) The method suggested here for the prediction of bed level 
fluctuations is based on the application of manual calculation 
techniques. This method gives satisfactory results for water gauge 
cross sections with a long (at least 40 year) observation period.

(e) It is also possible to use this method for other profiles, 
situated between water gauge profiles, but it requires detailed 
analysis of more comprehensive empirical data.

(f) The use of a computer would permit the development of a more 
complex model, which would describe in a more comprehensive way the 
fluctuation processes. Therefore, further work is required on the 
development and implementation of such a model.
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