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ABSTRACT A physically-based mathematical model is 
developed to simulate flow on a graded terrace idealized 
as an erodible and pervious overland flow plane and a 
terrace channel. A nonlinear kinematic wave scheme is 
adopted for routing the water and the sediment discharges 
through the overland and the channel flows. The erosion 
and the sediment transport capacities, the erosion rate 
and the sediment concentration in the overland flow are 
interrelated through a closed form equation. The 
transport capacity of the channel is determined by using 
the unit stream power concept. A finite difference 
method is employed to solve the partial differential 
equations of the mathematical model. The model is 
verified by a set of observed data.

INTRODUCTION

Analytical treatment of terrace flow is difficult, if not impossible, 
due to the simultaneous interactions of the many processes involved 
relating to water, soil and the plants. However, with the aid of 
digital computers and numerical analysis techniques, physically- 
based mathematical models can be devized to simulate a variety of 
terrace flow conditions.

From the hydraulic engineering viewpoint, most graded terraces 
can be idealized as conjunctive flow systems, consisting of an 
erodible and pervious overland flow plane and a terrace channel 
constructed perpendicular to the overland flow direction. The major 
processes and the flow components involved are the rainfall, 
infiltration, overland flow, channel flow and the detachment, 
transport and the deposition of soil particles throughout the system 
as shown schematically in Fig.l. These flow components have been 
treated individually or in pairs in many sophisticated mathematical 
models reported in the past. For instance, overland and channel 
flows on impervious surfaces were studied by Kareliotis & Chow 
(1971), infiltration by Whisler & Klute (1966), overland flow on 
pervious surfaces by Akan & Yen (1981), flow in alluvial channels by 
Chen & Simons (1973), and erosion by surface runoff by Meyer & 
Wischmeier (1969). The mathematical model introduced here considers 
all the major components of the terrace flow and accounts for the 
dynamic equilibrium among them.
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FIG.l Schematic representation of terrace flow.

DESCRIPTION OF THE MATHEMATICAL MODEL

The proposed model attempts to represent as many components as 
possible by physically-based equations. However, several parametric 
equations are also included since no better information is available 
in the literature describing some of the processes involved in 
terrace flow.

Rainfall

Rainfall is the main source of water for terrace flow. It also 
causes soil erosion due to the impact action of the raindrops, 
especially prior to the commencement of the surface runoff. As 
proposed by Bubenzer & Jones (1971), the quantity of soil detached 
and splashed by rainfall is estimated from

Sp = m (2.78 x IO-7 I)“ kfj p"à (1)
 2in which Sp is the soil splash in kg m , I is the intensity of 

rainfall in mm h 1, ke is the total kinetic energy of the raindrops 
in J m , pc is the percentage of clay in the soil, and the 
parameters take the values of m = 1.5-3.0, Ot = 0.25-0.55, 
¡3 = 0.83-1.49, and À = O.4O-O.6O. As suggested by Wischmeier & 
Smith (1958) the kinetic energy, ke, is estimated by using

ke = 24.16 P + 8.73 P log (1/25.4) (2)

in which the depth of rainfall P is. in mm.

Infiltration

The rate of infiltration is computed by employing a set of 
expressions proposed by Mein & Larson (1971) and verified through 
the numerical solutions of the Richards equation. The infiltration 
equations adopted are

ts = (T SMD)/[l(l/K - 1)] (3)

fp = K[1 + (f SMD/FV)] (4)
Fv = (V SMD)/[(I/K) - 1] + / f dt (5)

üs
where ts is the time from the start of the rainfall to the saturation 
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of the surface soil, ¥ is the average suction head at the wetting 
front, SMD is the initial soil moisture deficiency, K is the 
hydraulic conductivity, fp is the infiltration capacity which is 
equal to the rate of infiltration under the conditions examined and 
Fv is the accumulated infiltration up to time t. The integration in 
equation (5) is evaluated by using the trapezoidal rule.
Equations (3)-(5) are dimensionally homogeneous.

Overland flow

Overland flow is approximated by a nonlinear kinematic wave. The 
equation of continuity for a unit width is written as

Oy/3t) + Oq/3x) + Oys/3t) - I + f = 0 (6)

where y is the depth of flow, q = q^ + qg is the combined discharge, 
qw and qs are respectively the water and the sediment discharges, ys 
is the depth of surface soil detached, I and f are respectively the 
rates of rainfall and infiltration, x is the displacement in the 
flow direction and t is time.

The momentum equation is simplified by assuming the friction slope 
can be approximated by the bottom slope of the overland flow plane. 
Hence

f*  q2/(8gy3) = SQ (7)

where f*  is the Darcy-Weisbach friction coefficient, g is the 
gravitational acceleration and Sq is the bottom slope. In the 
proposed model, the friction coefficient is calculated by using an 
approximate form of the Moody diagram as suggested by Kareliotis & 
Chow (1971).

The equation of continuity for sediment transport in the overland 
flow is

3(c y)/9t + 3(c q)/3x = Er (8)

where c is the volumetric sediment concentration averaged over a 
flow section and Er is the rate of soil detachment. By definition, 
Er = (1 - p)3ys/3t where p is the porosity of the surface soil. The 
rate of detachment and the sediment concentration in a flow section 
are interrelated by the closed form equation

(Er/D) + (c q/T) = 1 (9)

in which D and T are respectively the detachment and the transport 
capacities of the overland flow. As suggested by Foster & Meyer 
(1971), D and T are evaluated as D = C^T1’5 and T = C^T1‘5 where 
I = YyS0 is the unit tractive force over the flow bed and Y is the 
specific weight of the fluid. The coefficients and Ct take the 
values Ch = 0.001-0.5, and C+- = O.OO4-O.8 as D, T, and T are

u —2 —I —1 —1 —3respectively evaluated in kg m s , kg m s and kg m
Overland flow solutions are obtained by using a finite difference 

technique. At each time step, equations (6) and (7) are solved 
through the use of an explicit characteristic scheme, and the values 
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of y and q at various flow sections are determined. Then, knowing y 
and q, the values of c and Er are calculated from equations (8) and 
(9) by use of a direct explicit scheme. Total soil loss up to time 
t is computed as

ft fL
ert = Jo Er dx dt (10)

where L is the flow length, and the integral is evaluated 
numerically. The details of the solution procedure have been given 
by Ezen (1979) and will not be repeated here.

Channel flow

Flow in the terrace channel is also represented by a nonlinear 
kinematic wave. Sediment deposition over the channel bed as well as 
the lifting of the deposited material is allowed. The equation of 
continuity for the channel flow is

OA/at) + OQ/3x) + OAd/3t) - qL = O (11)

in which A is the flow area, Q = Qw + Qs is the combined discharge, 
Qw and Qs are respectively the water and the sediment discharges, 
Ad is the volume of the sediment deposition per unit length of the 
channel, q^ is the combined lateral inflow of water and sediment 
from the overland flow, x is the displacement in channel flow 
direction and t is time. The direct rainfall input into the channel 
and the seepage from the channel are neglected.

Similar to the formulation of the overland flow, the friction 
slope of the channel flow is evaluated by the Darcy-Weisbach formula 
and equated to the channel bottom slope Sd to yield

f*  Q2/(2 g A2 R) = Sb (12)

in which R is the hydraulic radius.
The equation of continuity for the sediment phase in the terrace 

channel is

9(cs Q)/9x + (1 - ps)9Ad/9t + 9(cs A)/3t - qsL = 0

where cs = Qs/Q is the sediment concentration averaged over a flow 
section, ps is the porosity of the sediment deposition over the 
channel bed and qsL is the lateral sediment inflow from the overland 
flow plane.

The unit stream power approach of Yang (1972) extended to unsteady 
flow is employed to evaluate cs from

cs = 2.02 (3.28 Q Sb/A - 2 x 1O-5)1’35 (14)
3—1 2where Q is in m s and A is in m .

Equations (11)-(14) are solved simultaneously by use of a finite 
difference scheme to determine the channel flow conditions. The 
solution procedure is similar to that of the overland flow and has 
been reported in detail by Ezen (1979).
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APPLICATION OF THE MATHEMATICAL MODEL

The proposed mathematical model is applied to a hypothetical graded 
terrace and the results are verified qualitatively. The overland 
flow plane of the hypothetical terrace has a flow length of 25 m, a 
width of 100 m and a slope of 0.10. The terrace channel is 
triangular with side slopes of 1/1 and 1/5. The channel is 100 m 
long with a bottom slope of 0.04. The parameters employed in the 
simulation are m = 3.0, Ot = 0.41, ß = 1.14, À = 0.52, pc = 20, 
T = 0.15 m, K = 4 x IO’7 m s“1, p = 0.40, SMD = 0.30, Cd = 0.10 and 
Ct = 0.60. A rainfall with I = 64.8 mm h-1 and t^ = 400 s is 
assumed to occur over the hypothetical terrace.

The simulated rainfall hyetograph as well as the computed 
hydrographs of infiltration, overland flow and channel flow are 
shown in Fig.2. The slight difference between the areas enclosed 
under the total flow graphs of the overland and the channel flows 
implies that sediment deposition occurs in the channel.

FIG.2 The infiltration and the surface flow hydrographs.

The computed rates of soil detachment by the surface runoff are 
shown in Fig.3. The first peak around t = 110 s represents the 
lifting of the soil particles already detached by the raindrops. The 
second peak is due to the increased flow depths as the overland flow 
develops. This causes a high sediment content requiring a larger 
portion of the flow energy to be consumed for the sediment transport. 
So, it is followed by a reduction in the detachment rates. Later, as 
the heavy sediment load is carried downstream, the detachment rate

FIG.3 The rates of detachment by the overland flow.
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increases again starting from the upstream flow sections until the 
recession of the overland flow.

Shown in Fig.4 are the water and sediment discharge hydrographs 
computed at various flow sections of the overland plane. In 
accordance with the spatially varied flow properties, the discharges 
increase in the main flow direction.

FIG.4 The discharge hydrographs of the overland flow.

The accumulated amount of sediment deposition calculated at 
various flow sections along the terrace channel is shown in Fig.5. 
Expectedly, smaller velocities at the upstream flow sections cause 
larger amounts of deposition.

FIG. 5 Sediment deposition in the terrace channel.

Fig.6 illustrates that the conservation of mass principle is 
perfectly satisfied in the mathematical model for both water and 
solid phases. The ordinate of a computed point in Fig.6(a) is 
determined as the numerical integration up to time t of the 
instantaneous rates of net water input to the system, that is the 
rate of rainfall minus the rate of infiltration minus the rate of 
channel water outflow. The abscissa of the same point is calculated 
as the summation of the instantaneous storages of water over the 
overland plane and in the terrace channel at time t. In a similar 
manner, Fig.6(b) is constructed for the sediment phase.
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FIG.6 The conservation of mass in the model.

VERIFICATION OF THE MATHEMATICAL MODEL BY OBSERVED DATA

The mathematical model is verified by a set of data observed in the 
experimental terraces of the Soil-Water Central Research Institute 
in Ankara, Turkey. The details of the experimental terraces and the 
measurement techniques have been reported by Dogan et al. (1977).
The measurements were taken at the exits of the overland flow planes 
and are employed to verify only the overland flow component of the 
mathematical model.

The composition of the soil examined is 22% clay, 24% silt and 
54% sand. It has a porosity of 0.40, a hydraulic conductivity of 
9 x 10-8 m s-1 and an initial moisture deficit of 0.20. The 
parameters adopted for this soil in the numerical simulation are: 
m = 3.0, a = 0.41, ß = 1.14, pc = 20, À = 0.52, p = 0.40, SMD = 0.20, 
T = 0.40 m, Cd = 0.008 and Ct = 0.045.

Eight different flow conditions examined are summarized in 
Table 1. In the first four cases, the overland flow length is 23 m 
with a bottom slope of 0.10. In the remaining cases, the overland 
flow plane is 21.9 m long and has a bottom slope of 0.17. Also shown 
in Table 1 are the observed and the computed results. A good 
agreement exists between the mathematical model and the experiments 
for all the flow cases investigated.

TABLE 1 Comparison of computed and observed results

Case 
no.

Rainfall Soil loss (kg) Runoff volume (m3)

I(mm h 1) td(s^ Observed Computed Observed Computed

1 18.0 600 0.014 0.017 0.001 0.001
2 23.8 900 0.070 0.067 0.040 0.044
3 37.8 720 0.115 0.092 0.100 0.106
4 10.8 2100 0.055 0.050 0.026 0.024
5 18.0 600 0.022 0.030 0.002 0.002
6 23.8 900 0.120 0.115 0.048 0.044
7 37.8 720 0.170 0.160 0.110 0.106
8 10.8 2100 0.090 0.092 0.027 0.024
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CONCLUDING REMARKS

The physically-based mathematical model introduced and verified in 
this study is not the most sophisticated one possible. It is rather 
a usable model which satisfies the basic principles of hydraulics, 
yet requires input data not unreasonably detailed and difficult to 
collect. Such a model can be used not only for analysing the terrace 
flow as a distributed system, but also for testing the validity of 
the empirical formulae commonly employed in terrace design practice.
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