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ABSTRACT This study discusses the basic problem of the 
transport of sediment in small flow channels which 
naturally exist on intensively cropped land. Emphasis is 
placed on the transport mode in the form of a densely 
packed moving layer near the bottom of the channel. 
Governing equations for the thickness of the bed layer are 
derived which are based upon the results of some recent 
studies pertaining to the constitutive laws for stress and 
deformation rate of granular materials.

INTRODUCTION

Erosion and transport of soil by water on intensively cropped land 
has received considerable attention in the past. The main thrust of 
investigations has been the development of simplified empirical 
relationships for sediment yield and their experimental verification. 
These equations have proved to be quite useful for management 
purposes, but lack the scientific detail essential for a well founded 
mathematical model derived from physical laws. A systematic approach 
to erosion and transport of soil from upland areas is important 
because it represents the complex interaction of the kinetics of 
falling rain, the hydrodynamics of flow and the dynamics of granular 
materials.

Essentially all of the sediment lost from intensively cropped land 
during rainstorms is transported by runoff along row furrows, rills 
and other flow concentrations. The rate of sediment transport for 
such conditions depends on the rate at which the sediment is eroded 
from the interrill areas to the concentrated flows, the size and 
density of the sediment and hydrodynamic characteristics of the flow 
channels. Under normal conditions row cross sections cause flow to 
be parallel to the rows. Where the land slope is not high, the 
lengths of the rows and their steepnesses are generally small and 
render the sediment movement and the water flow strongly 
interdependent. Soils are eroded by raindrop impact from the 
interrill areas between rills or between rowcrop furrows and from 
rills. Rates of interrill erosion may be quite high on intensively 
cropped land (Meyer & Harmon, 1979), but the sediment yield from the 
row furrows will depend on the hydraulic characteristics as well as 
the size, density and related bulk properties of the eroded materials.
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For example, a large proportion of the finer particles will be 
transported in suspension even at low flow rates. But the transport 
of larger and/or denser sediments such as sand or aggregates takes 
place as bed load. These sediments move only under sufficiently 
high flow rates in the row furrows. A part of the eroded sediment 
may be deposited, in which case the sediment yield is much lower. 
Thus, the flow of sediment in row furrows needs a detailed 
hydrodynamic analysis, which is the main theme of the present paper.

GOVERNING EQUATIONS

The equations governing flow of a turbulent two-phase mixture of 
water and granular sands are given by

^+(cuk*,k  = o (1)

^-^k/k-o

cpS[(3UJ/at) + = -cpik + S(uk - uj) - cpSgfk + pST^i£ (3)

(1 - c)p[(3uk/9t) + u£u£ik] = -(1 - c)p,k + Sd(u*  - uk)

-(1 - c)^k + PW (4)

In the above c is the sediment volume fraction, uj| and u^ are the 
sediment and fluid mean velocities, ps and p are the sediment and 
fluid densities, p is the mean fluid pressure, the drag force per 
unit slip velocity and and are the stress tensors acting on 
the solid and the fluid, respectively. A comma indicates partial 
differentiation whereas a repeated index stands for summation. (1) 
and (2) indicate the balance of mass whereas (3) and (4) the balance 
of momentum of the mixture. (1-4) are obtained in a standard way by 
applying the principles of continuum mechanics as applied to mixture 
theory (Soo, 1967).

In the following we wish to apply the above equations to a special 
case in which the concentration c increases rapidly to a maximum 
value in a thin layer near the bottom of the channel. It is assumed 
that the granular solids are transported by the hydrodynamic force of 
water but form a thin zone with variable thickness ô over the 
immovable bed. The sediment layer consists primarily of larger size 
particles, whereas fine particles and clay are transported in 
suspension. Due to variations in the dynamic conditions of the two 
modes of transport, there exists a time dependent exchange between 
the suspended and the bed layer sediments. To study the mechanics 
of bed layer transport we will, however, assume that there is no 
dynamic interaction between them. Thus, the total sediment yield 
will be given by a linear sum of the two. Further, only two 
dimensional motion in the vertical plane will be considered.

We consider the motion in the x-z plane as shown in Fig.l. The
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FIG.l Sediment transport in a small channel; R± is the 
water and sediment (dilute suspension)suspension region; 
Rfl is the bed layer.

details of motion are given by a composite picture of the three flow 
fields: (a) flow of water in 0 < z < H; (b) flow of suspended 
sediment in ó < z £ H; and (c) flow of sediments in bed layer, 
0 £ z < Ô.

Flow of water

It is assumed that only small size particles are present in 
suspension and the concentration c is quite small in ó < z < H. 
Therefore, it is anticipated that the effect of slip between the 
fluid and sediment is quite small. Thus, we assume 

so that the governing equations for water flow yield

8h
at

9Q 
a7 = q (6)

9u 9u 8h
st 3ÏÏ + ga7 " g(so " sf) (7)

where

h = H - Ô
Q = f udz 

0
Sg and Sf are bed and friction slopes respectively. Equations (6)-(7) 
are the same as the St Venant equations utilized in open channel 
hydraulics. q is the lateral inflow from the surrounding interrill 
areas. The effect of momentum due to the lateral inflow in (7) has 
also been neglected.

Flow of suspended sediment

Since fine sediments including clay particles will be transported in g -suspension, we assume that u^ = u^ and the concentration c is quite 
small. We integrate (1) with respect to z from z = ó to z = H and 
obtain
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3 ,h J a fH , a<5 an
aïï 4 cdz + a7 4 cudz + ( W CHat)

9 ô 9h+ (côUÔâT ’ CHUH3x + (CHWH - CÔW<5) = ° <10)

In (IO) Ctt and ex are the concentrations at the top and bottom 
surfaces of the suspension domain. The boundary conditions at these 
two surfaces are given by

,3h 3h . ,nl,CH 3t + Uh3x ~ Wh " 11

,a<5 A 3Ô .
c<S(3t UÔ3Ï " w<s) = qb (12)

where qj_ is the sediment influx due to erosion in the surrounding 
interrill areas, and is the amount of sediment flux either 
deposited or picked up by the suspended sediment from the bed layer. 
When (11)-(12) are utilized, (10) leads to

9C 9Qs .. Q.
3? + -ar = qi - qo (13)

where
rHÇ) = / cudz s

rHC = / cdz , (14)

It may be noted that in the present case the sediment is received 
by the flow channel from the surrounding areas at the top surface 
and, therefore, the concentration at z = H is not zero. The product 
of cH and the rate of lateral inflow of water yields the lateral 
influx of sediment given by qj_. The determination of q^ is quite 
involved, because it represents the rate of exchange of sediment 
between the bed layer and the surroundings. The vertical flux of 
sediment away from the bed is related to the sediment parameters 
through a consideration of the mass and momentum equations for the 
water and the sediment. Previous workers (Bagnold, 1973; Owen, 1964; 
Parker, 1975) have examined the problem of the transport of sediment 
over a flat bottom using calculations of the trajectory of a 
saltating particle. In this context the concept of turbulent 
fluctuations in the flows have also been introduced, but there is no 
simple theory available which may be utilized at present. Therefore, 
we wish to study in some detail the dynamics of bed layer transport 
by neglecting the exchange process which exists with the suspended 
mode of sediment transport. A partial justification for this type 
of analysis may be advanced in a physical case in which the stream 
reaches its transport capacity in suspension, so that an additional 
influx of sediment must be carried by the bed load. In this case C 
in (13) may be taken to be constant so that (13) yields

q± = q0 (15)

qQ in (15) must, then, be interpreted as the net amount of sediment 
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deposited on the channel bed which is transported in the bed layer. 
The momentum equation of the suspended sediment does not lead to any 
new result in this case and yields the same equation as (7).

Flow of sediment in the bed zone

We assume that in this zone, solid grains are propelled by the flow 
of water over the fixed bed of grains of the same sort. In general 
there exist three modes of movement: rolling, saltation and 
suspension. In addition the grains also have angular motions. 
Since we assume that the bed layer is densely packed, the effect of 
spin and suspension is assumed to be small and, therefore, the 
present analysis is restricted to a consideration of an average of 
the transport modes in saltation and rolling as evidenced by the 
experiments of Francis (1973). The solid grains are assumed to be 
packed together and move along the rigid bed in the form of bulk 
flow due to the hydrodynamic force of the water and the shear stress 
at the boundary z = Ô. In addition the weight of the grain itself 
may also add to the propelling mechanism.

The motivation for the present analysis, which treats the bed 
layer as a bulk flow model, has been derived from the work of 
Bagnold (1954), Goodman & Cowan (1972), and Savage (1979). These 
authors were concerned with the development of certain constitutive 
equations appropriate for flow of cohesionless granular materials 
with finite deformation rates at low stress levels. The theory 
accounts for the non-Newtonian nature of the flow as evidenced by 
Bagnold's (1954) experiments. The recent formulations of the 
constitutive equations have been applied successfully to gravity 
flows in inclined chutes and vertical channels. These flows, 
moreover, are with relatively high deformation rates so that the 
grain inertia plays a dominant role. But sediment flows along 
channel beds take place at relatively slower rates which permits 
exclusion of the inertial effect. It seems plausible, therefore, 
to assume that the concentration c in the bed layer is constant but 
the non-Newtonian nature of flow must be retained. Thus, when (1) 
is integrated with respect to z between 0 to <S, we obtain

(16)3 r<5 g 3<S s37 4 CbU dZ ' (%U h=0 37 + (cbw }z=6 = °

The boundary condition at z = <5 is given by

,36 s3<5 Sx
cb (a? + u a7 ’ w > = qt> (17)

where c^ is sediment concentration in the bed, and q^ is the sediment 
influx to the bed layer. When (17) is utilized, (16) yields

3Ô 3
Ct>37 + 77Qb = <3b (18)

r 6 aQb = Jo cbu dz (19)
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For an approximate evaluation of the integral in (19), we now 
consider the momentum equations pertaining to the flow of water and 
the sediment layer. We adopt the point of view that the sediment 
layer is driven by the hydrodynamic forces. These consist of forces 
which directly act on the sediment particles plus a certain shear 
stress acting on the surface z = Ô. Under normal conditions the 
sediment particles near the bed (z = 0) will tend to adhere to the 
surface of the bed. In this case us = 0 when z = 0. But during 
high flows, certain slip conditions may exist between the bed layer 
and the bed. In the following analysis we neglect the effect of 
this slip for the sake of simplicity, but the results are easily 
extendable for non-zero slip conditions.

Since the classical theory of channel flow neglects the z 
component of velocity w, we also compute the hydrodynamic pressure p 
on the sediment particles in a similar way. Thus for water, the z 
component of momentum reduces to

3p/9z - - Pg (20)

which yields the pressure at z = ó

P6 = Pg(H - Ô) (21)

Similarly, the pressure variation in the sediment layer is given by

p = - Psgz + HPg + (pS - P)gô O < z < (5 (22)

from which

1^- = Pg4^ + (Ps - P)g4^ o $ z $ ô (23)
ox ox ox

The momentum equation along the x-axis yields

0 = - c,Jr^ + c, PSg + Ps-^- O < z < ô (24)
bdx b dy

where S is the channel slope and Is is the shear stress on the 
sediment particles. As discussed previously, in the spirit of open 
channel hydraulic analysis, we have neglected the inertial effect of 
sediments in arriving at (24). When (23) is substituted in (24), an 
integration of the result yields

is = íck>Pg-5~ + cb^Ps “ “ cbpsgsy + A o < z < 0 (25)

The constant A may now be evaluated by a knowledge of the shear 
stress at z = Ô. The shear stress depends on the type of flow 
given either by (6)-(7) or from an analysis of boundary layer theory 
based upon the fluid dynamics of turbulent flows. It seems also 
plausible to estimate from Shield's diagram. Thus,

A = - {cbPg|^ + cb(ps - P)g|^ - cbpsgs}<5 + Tg (26)
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At this stage we must consider the mechanics of the flow of 
granular solids such that the shear stress Is may be related to the 
deformation rates. Much of the previous work on granular flows has 
dealt with confined flow in bins and hoppers. Typically, 
predictions of the stress fields have been obtained by solving the 
quasi-static equilibrium equations under the assumption that the 
bulk solid obeys the Coulomb yield or failure criterion in 
accordance with the Mohr-Coulomb theory of limiting equilibrium. 
Yielding in influenced by net hydrostatic pressure in the Coulomb 
failure criterion, which states that yielding takes place when

11 I = Tq + T tan $

when T and T are respectively the shear and the normal stresses, Tq 
is the cohesion and 4) is the internal angle of friction of the bulk 
solid. While this approach has been applied in many statical 
problems, uncertainty exists about its extension in dynamical cases, 
particularly with respect to the choice of 4).

Over 25 years ago Bagnold (1954) performed experiments on 
neutrally buoyant spherical particles suspended in a mixture of 
glycerine, water and alcohol and sheared in a coaxial rotating 
cylinder apparatus. Both the torque and the normal stress in the 
radial direction were measured when various concentrations of the 
spherical grains were sheared. In the grain inertia region in which 
the fluid in the interstices plays a minor role and the dominant 
effects arise from particle-particle interactions, Bagnold observed 
that the shear and the normal stresses are proportional to the 
square of the velocity gradient. The interesting phenomenon was the 
presence of a normal stress (which Bagnold termed the dispersive 
pressure) proportional to the shear stress, reminiscent of the 
quasi-static behaviour of a cohesionless Coulomb material. 
Bagnold's analysis indicated that the normal stress in the 
z-direction was

P = aPsÀf (À) D2 (-^) 2 cos Ct • (27)
dZ 1

and the grain shear stress

Ts = p tan Cti (28)

where f is an unknown function of À, a is a constant and Ot^ is an 
unknown angle dependent upon the collision conditions. D is the 
diameter of the grain and À is certain linear concentration.
Bagnold was able to determine appropriate values of a, Ot^ and f(À). 
Bagnold applied these results to predict the flow of dry sand down 
an incline.

Therefore, on the basis of Bagnold's pioneering research, we 
assumed

= K(Ts)a (29) 

where K and ot are constants to be determined experimentally. OC may
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be assumed to be equal to 2 in the 
be integrated with respect to z to

present case. Equation (29) may 
yield

(T6 - P - P>^ - PSS] I0*1

2 + <pS " p)3x " pSsl
(30)

The constant A^ may be evaluated from a knowledge of the relative 
slip between the sediment layer and the bed. If we neglect the slip, 
then we have

us = 0, z = O (31)

which yields
(Tó . cbg[pg+ (Ps - P)|¿- P3s] SI"1

Ai = - STTT---------------- É---------------- S------------------- (32)
+ <PS - p)F - pSsJ

L dX OX J

The sediment discharge is finally obtained as 
f ó s

2b = Jo %u dz
which yields

/ CX + 2 r P 3tï s 3Ô S 1 r?-10t+2Kcb - {t<5 - cb9[p^ + (P - P)g^ - P S] 0}
Qb " (a + i) (a + 2) c2 2 j~3H + (pS _ p) 3Ó _ pSsj 2

b L ox dx J
’*■ Al^cb (33)

Note that in the general case the sediment discharge depends on 
the bed layer thickness ó as well as 30/Ox. The dependence on other 
parameters, i.e. T¿, S and H is also there which, of course, was 
expected.

The formulation of the mathematical problem of determining the 
sediment discharge may now be considered complete. There are 
several interesting features of the present formulation which need 
detailed analysis and discussion. To illustrate a rather simple 
case, consider the transport of the sediment only due to the action 
of the shear stress 1¿ so that we assume 3ô/3x = 3h/3x = S = 0 in
(33) . In this case,

iá ^^36 _ % (34)3t + b Ott — dx cfe
where

b = a
= kt.0 (35)

(34) is a hyperbolic partial differential equation and its solution 
may be discussed in some detail with respect to given initial and 
boundary conditions. A good reference for this purpose is the book 
by Whitham (1974) .
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