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Abstract The rill structure has a profound influence on the flow and 
erosion pattern over a hillslope, and therefore needs to be represented in 
physical models in an appropriate manner. Using spatial scale arguments 
and the ergodic hypothesis, key properties of the rill structure may be 
identified which allow for the replacing of the rapidly varying 
microtopography with more stable averages. This paper suggests a new 
model for quantifying the influence of rill structure in physical models 
through stochastic averaging of the hydrodynamic processes. 
Comparisons of the model predictions with experimental observations 
over a hillslope show good agreement.

INTRODUCTION AND BACKGROUND

Prediction of overland flow and sediment transport from hillslopes has 
important implications in resolving water quality and land use issues. For 
example, many freshly cut hillslopes are located adjacent to highways, and the 
soil erosion from such hillslopes poses a severe traffic hazard on the road at the 
foot of these slopes. One important approach to analysing such problems is 
through the use of physical models. However, many of the current techniques 
for modelling overland flow and sediment transport are inadequate because they 
do not represent the rill structure over the hillslopes in an appropriate manner. 
Such models neglect the differences between the transport capacities of the flow 
within rills and the flow over adjacent overland flow sections, often leading to 
serious misinterpretation of results. Laboratory and field experimental results 
have demonstrated that the presence of rills significantly affects erosion of the 
soil surface (Meyer et al., 1975; Moss & Walker, 1978). Therefore effective 
abatement strategies can be formulated only after a better understanding of the 
rill pattern is obtained and when physical models are able to represent the rill 
geometry.

Towards this end, the rill structure over a particular hillslope was studied 
and different spatial scales were identified in order to characterize the hillslope 
microtopography. An ergodic length scale was established so that continuum 
representation could be used over the hillslope, instead of modelling the 
detailed soil profile. The influence of microtopography on overland flow and 
subsequent erosion and sediment transport computations has been recognized 
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by Emmett (1978), Dunne & Dietrich (1980), Abrahams et al. (1989) and 
Abrahams & Parsons (1990). These authors have criticized the sheet flow 
approximation of conventional overland flow models.

The present work dealing with surface structure of rilled hillslopes has 
important implications for the hydrology of overland flows and sediment 
transport. Instead of sampling over the entire hillslope, it is suggested that 
sampling should be concentrated over the ergodic length. The rill geometry is 
characterized in terms of easily measured quantities which are then used in the 
development of a stochastic averaging theory. This theory combines the 
hydrodynamics of the overland flow and erosion processes within the rills and 
on overland flow sections. These equations are solved numerically and the 
results are then compared to those obtained from hillslope experiments.

MATHEMATICAL FORMULATION

Sediment particles are removed (or deposited) at various time-space locations 
by the flow of water (resulting from rainfall) down the hillslope profile. This 
process involves detachment (dislodging of soil particles), transportation 
(entrainment and movement of soil particles with the surface flow) and 
deposition (when the transport capacity of the flow is reduced below that 
required for the existing suspended load). The active eroding agents in such 
situations are raindrop impact and overland flow.

Overland flow and sediment transport

The equations governing shallow water flow are derived from conservation of 
mass and linear momentum principles. The continuity equation for overland 
flow is (see, for example, Bennet, 1974):

= Z(X,Î)-^Î =/(y;V) (1)
dt dx

where: y(x,t) is the depth of water over the sediment surface (m); x is the 
spatial coordinate measured along the horizontal (m); t is time (s); q(x,t) is the 
discharge per unit width of the flow (m2 s'1); and i(x,t) is the net lateral inflow 
function (m s'1). The momentum equation for overland flows may be modelled 
by the kinematic wave approximation given as:

Sf = So (2)

where is the friction slope or slope of the total energy line and So is the bed 
slope over which the flow takes place. The flow is completely specified by the 
use of a friction law relating the discharge and the depth at any time and at any 
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spatial location. A frequently used friction law for turbulent flows is given by 
the Chezy relationship:

q = Cy3/2 S}'2 (3)

where C is Chezy’s roughness coefficient. The process of erosion is presumed 
to occur so slowly that the change of the water profile with time is much faster 
than the corresponding change in the sediment profile. The conservation of 
mass equation for the sediment profile is given by:

^)+^)+(l_K)^ = (4)
dt dx dt ps

which may be rearranged in the form:

= g^c,y,x,t) (5)
dt

where: c(x,t) is the volumetric concentration of suspended sediment (vol/vol); 
K. is the soil porosity (fraction), ys(x,f) is the sediment elevation from a fixed 
datum (m); Sp is the detachment rate from rainfall impact (kg m'2 s’1); and ps 
is the density of the soil (kg m'3). Bubenzer & Jones (1971) developed an 
expression for soil erosion due to raindrop impact as:

Sp = m(2.78 x IO'7// kbe P~cd <6)

where Sp is the soil detachment rate (kg m’2 s’1); Ir is the rain intensity 
(mm h'1); ke is the total kinetic energy of rain drops (J m’2); Pc is the 
percentage of clay in the sediment; m = 1.5-3.0; a = 0.25-0.55; b = 
0.83-1.49; d = 0.40-0.60; and D is rainfall depth (mm). The expression for 
the kinetic energy of the raindrops is obtained as:

Ir (7)k. = 24.16D + 8.73Dlog -d— v ’
25.4

The sediment continuity equation is by itself not sufficient to solve for 
the two unknowns, c and ys, appearing in equation (4). We obtain another 
relation by considering a first-order reaction equation as proposed by Foster & 
Meyer (1975):

Dr = ^(Tc-qs) <8)

where: Dr is the erosion or detachment rate (kg m’1 s’1); a is the first-order 
reaction coefficient; Tc is the flow transport capacity (kg m’1 s’1); and qs is the 
sediment load (kg m'1 s’1). Equation (8) states that the erosion (or deposition) 
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rate Dr is directly proportional to the difference between the sediment transport 
capacity and the sediment load at any time-space location. Therefore the 
surface flow erodes at a maximum rate when there is no sediment load. The 
coefficient a in equation (8) is determined by:

a = (9)
Tc

where Drc is the erosion capacity of the flow (kg m'1 s'1). The flow transport 
and erosion capacities are defined as follows:

T. = C,(r-r„)'J (10)

D„ - C/-! (ID

where: C, = 0.001-0.5; Ç, = 0.004-0.8; rc, is the critical shear stress I 7 ci 7 vi
(kg m'2); and t is the unit tractive force over the flow bed (kg m'2). The 
tractive force on the flow bed is given by:

t = yyS0 (12) 

where y is the specific weight of water (kg m'3).

Rill flow and sediment transport

The equations for flow and sediment transport within rills are similar to the 
overland flow equations and are mentioned here for completeness. For 
rectangular rills and using a kinematic wave approximation, the flow equation 
is as follows:

dh _ r(x,t) h db C(S0)’A d f (bh)15 . _ f(h b.x . (i3)
bi b(x,t) b dt b bxl (b + 2h)'A r

and the equation for sediment transport within rills is (Foster, 1982): 

where: h(x,f) is the flow depth in the rill (m); r(x,Z) is the net lateral inflow per 
unit length (m2 s'1); b(x,t) is the rill width (m); ps is the mass density of the 
sediment particles (kg m'3); cr is the sediment concentration by volume; Qs is 
the sediment load (kg s'1); A is the flow cross-section area (m2), Drr is the 
erosion/deposition rate from the rill boundary per unit length (kg m'1 s'1); and 
Dl is the lateral sediment inflow (kg m'1 s'1). Equation (14) may be written in 
compact form as:
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3(cr)
—— = gr(h,cr;x,t) 

ot
(15)

Figure 1(a) shows the differences between the flow discharges within rills 
and on overland flow sections at the same downstream location on a hillslope 
(in Northern California, USA). Similarly, Fig. 1(b) shows that the sediment 
discharge within a rill is an order to magnitude greater than the sediment loss 
from overland sections. The results in these figures indicate the need for 
averaging based on the rill structure on the hillslope.

Fig. 1 (a) Flow discharges within a rill and over an adjacent overland flow, (b) 
Sediment discharges within a rill and over an adjacent overland flow section.

MODELLING OF THE RILL STRUCTURE

We first describe the important length scales over a rilled hillslope in a 
qualitative manner (c.f. Govindaraju & Kavvas, 1992). Over very small 
averaging intervals, any average property of the hillslope fluctuates very 
rapidly due to the highly irregular microtopography. We define the length 
scale, Lc, as the characteristic length scale of the microtopography. This length 
scale is a measure of the rapidity of the fluctuations in the rilled soil surface. 
As the averaging interval increases, the hillslope average property attains a 
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stable value. The scale at which this occurs is termed Lh and is the local spatial 
stationarity length scale. This stable value may change at very large values of 
the averaging interval due to changes in the terrain which induce large-scale 
spatial nonstationarity. The length scale Lt is likely to be greater than the width 
of an individual straight single hillslope which is the subject of this study. This 
large length scale Lt is more important for analysis at the watershed scale. The 
region where local spatial stationarity is applicable is termed the region of 
ergodicity and represents the ergodic length scale, provided that the correlation 
length of the property being investigated falls within this interval (i.e. 
correlation length <Lh). This is the only region where ergodicity is strictly 
valid. Within this study framework, ergodicity represents the equivalence of a 
spatial average representing a hillslope spatial property to the overall average 
of this property. Over the range of this length scale [Lh, Lt], to be denoted by 
Le, spatial averages may be used to represent the overall averages. As the 
averaging interval along the cross-slope (y coordinate in Fig. 2) increases, the 
surface tends to attenuate and the highly irregular microtopography which 
makes up the hillslope is gradually replaced by a more stable average at the 
ergodic length scale.

We are therefore trying to establish a continuum representation and to 
replace all the rapidly fluctuating spatial heterogeneity with integrated spatially 
averaged values. Thus, with a fine-grained mesh, the characteristic length scale 
of the microtopography Lc is important. However, using a coarser interval for 
averaging in space in the cross-slope direction leads to stable averages and to 
the existence of the ergodic length scale Le for the mean behaviour of a 
particular hillslope property.

The magnitude of the averaging width at which ergodicity applies is of 
the utmost importance for the continuum representation. Conditions which need 
to be satisfied by the length scales are discussed briefly by Govindaraju & 
Kavvas (1992). The overland flow equations and the subsequent sediment 
transport equations are also affected by the continuum representation. Therefore 
a strategic averaging process needs to be chosen which reflects the physics 
involved at the microtopographic scale.

To estimate the characteristic length scale of the microtopography (Lc)

Fig. 2 Schematic sketch of a rilled hillslope surface.
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and the ergodic length scale (L¿), we need to analyse the rill structure over the 
hillslope. We first define the rill indicator function (RIF). Consider a small 
interval ¿sy along any transect over the hillslope (see Fig. 2). Depending on the 
time-space location of this interval, it may or may not contain a rill. The RIF 
is defined as follows:

I(x,t,y) = 1, if (y,y + Ay) contains a rill Qg)
= 0, otherwise

Thus the RIF is an indicator function which takes on the value of zero or one 
depending on whether the interval it considers contains a rill or not. The 
characteristic length scale of the microtopography may be estimated by the 
following statistical criterion based upon the covariance function of the RIF:

cov[l(x,t;y),I(x,f,y +d)] = 0 d >LC 0?)

Thus Lc is a measure of the correlation length of the RIF. The smaller this 
length scale, the more irregular is the rilled hillslope surface. Two spatial 
locations which are separated by a distance greater than Lc are likely to be 
uncorrelated in terms of the rill structure.

Figure 3 shows the variation of the correlation of the indicator function 
in equation (16) as a function of the spatial lag, d, in equation (17). The 
correlation function in this figure is a normalized version of equation (16) and 
is expressed as:

'W'MW'dil - (18)
var[Z(x,r;y)]

The RIF is assumed to be spatially stationary at each hillslope transect (a 
consequence of the homogeneous hillslope assumption). The spatial location in 
these figures is measured from the top of the hillslope (e.g. Loc 40 implies 40 
feet from the upstream location). All the cases considered in Fig. 3 indicate a

Fig. 3 Correlation function of the RIF at four different transects along an 
experimental hillslope in northern California, USA (1 in = 25.4 mm, 1 foot = 
0.3048 m).
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rapid decline in the correlation function. Once the spatial lag, d, in equation 
(17) increases beyond 0.25 m, the magnitude of the correlation function is 
bounded by 0.2 for the spatial locations in Fig. 3. Using similar data, 
Govindaraju & Kavvas (1992) estimated the characteristic length scale of the 
microtopography for this hillslope in California, USA as 1 foot (i.e. Lc ~ 
1 foot). They identified other interesting properties of the rill structure through 
spectral representations of the rill indicator function.

We now address the issue of the ergodic length scale, which is the 
distance at which stabilization of any averaged property occurs. The expected 
spatial rill density (ESRD) is defined as follows:

. y
X(x,t;y) = - í I(x,F,y)áy (^)

y t

Equation (19) shows that the ESRD X(x,t; y) is an average property over the 
distance y. From the definition of the RIF in equation (16), the ESRD in 
equation (19) represents the proportion of the transect that is occupied by rills. 
Therefore, the ESRD may be interpreted as the rill occurrence sample 
probability over the particular transect as a function of the hillslope averaging 
interval. Using the ESRD as the averaged property of interest, the stationary 
length scale may be evaluated using the following relationship:

X(x,f;y) = X(x,r) y > Lh and Le > Lh (20)

Equation (20) suggests that the ergodic length scale is that distance at which the 
ESRD does not change appreciably with an increase in the averaging distance.

Figure 4 shows the evolution of the expected spatial rill density (ESRD) 
along the hillslope at x = 30.0, 35.0, 40.0 and 45.0 feet. This figure shows 
that the expected spatial rill density achieves an almost stable value by 20 feet 
of averaging width. As is expected, the ESRD behaves very erratically during 
the first 10 feet of the averaging width. As the averaging width y increases to 
20 feet, many of the fluctuations due to the rapidly varying microtopography 
have vanished, as enough rills have occurred within this width to stabilize the 
average. In Fig. 4, the stable values of the ESRD generally increase with 
increasing slope distance x from the upstream location. The ergodic length scale 
(Le) was found to be 25 feet for the hillslope by Govindaraju & Kavvas (1992). 
Since the overland flow and sediment transport are directly influenced by the 
proportion of the hillslope occupied by the rills, it is likely that this ergodic 
length scale will hold for these hydrological phenomena also.

Let us denote the stable ESRD value by X(x,t) as in equation (20). This 
is obtained from X(x,t;y) for y > Lh. Therefore X(x,i) represents the space-time 
dependent average rill occurrence sample probability. It indicates the 
probability that the surface is being occupied by a rill over a hillslope width 
greater than Lh (but less than ¿,). It may be noted that the ESRD can vary only 
between 0 and 1 because it expresses a proportion (see equation (19)). In soil
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Fig. 4 Expected spatial rill density at four hillslope transects along an 
experimental hillslope in northern California, USA (1 in = 25.4 mm, 1 foot = 
0.3048 m).

erosion research, the most common methods of predicting sediment discharge 
have used the effective water discharge, the effective critical shear stress or 
unit stream power to determine the transport capacity of the flow. All these 
quantities are related to the flow depth and velocity and they all increase with 
increasing slope distance from the top of the hillslope. It is therefore not 
surprising that the ESRD also increases in a similar manner.

HYDRODYNAMIC AVERAGING

Let us first see how the stochastic averaging theory applies to the overland flow 
equations. We want to describe the space-time behaviour of the mean flow 
depth h(x,t;Ay) which is obtained by averaging the overland flow and rill flow 
dynamics over a width Ay. The equation for the mean depth takes the form:

= -Pr[Ay contains a rill] ^1)

+ <%(y;x,f))> . Pr [Ay does not contain a rill]

In the above equation Ay is the width of the slope over which the averaging 
process is being undertaken, the angular brackets denote the expectation 
operation, and/r and f0 are obtained from equations (1) and (13). The quantities 
in angular brackets reflect the need to take averages of the rill depths and 
widths and any other stochastic parameters in the overland and rill flow 
equations. The probabilities in equation (21) are evaluated using the ESRD and 
the statistics obtained for the indicator function in equations (19) and (20). 
When the averaging width Ay increases beyond the ergodic length scale Lh, 
then the probabilities in equation (21) do not change with Ay and are functions 
of only x and t.

The equations for sediment transport in the rills and the neighbouring
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Fig. 5 Computed and observed flow discharges (a) and sediment discharge (b) 
for an experimental hillslope in California.

overland flow equations can be averaged in a similar manner. Let ç(x,f;Ay) 
represent the hydrodynamically averaged concentration over the rill sections 
and the overland flow regions. The averaged sediment transport equation takes 
the following notational form:

dc(x,r;Ay) , „ . , z
-----  = <gr(ftr,cr;x/)> .X(x,r;Ay) (22)

+ <go(/zo’c’x’i)> .[l-X(x,f;Ay)]

where g0 and are obtained from equations (5) and (15) respectively.
Equations (21) and (22) represent the stochastic averaging of the 

hydrodynamic equations of surface flows and sediment transport in rills and 
overland flow sections. The distributions of the rill flow depth and the overland 
flow depths can be obtained experimentally (as in Abrahams et al., 1989; 
Govindaraju & Kavvas, 1992). Equations (21) and (22) are operator equations 
and their explicit representation shows the interdependence of the rill geometry 
and other stochastic influences on the averaged flow hydrodynamics. The 
performance of these equations against observed and simulated results over a 
hillslope in California, USA is shown in Fig. 5. These comparisons are 
satisfactory and indicate the utility of these equations in predicting average flow 
and sediment discharges over the hillslope.
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FUTURE WORK

More experiments need to be performed to determine the dependence of the 
expected spatial rill density on geomorphological controls. The interaction of 
the rills and overland flow sections needs to be developed further to provide 
accurate coupling of the hydrodynamics for the two components.
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